




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在正方形中,分別為的中點,交于點,連接,則()A.1:8 B.2:15 C.3:20 D.1:62.如圖,已知拋物線y=x2+px+q的對稱軸為直線x=﹣2,過其頂點M的一條直線y=kx+b與該拋物線的另一個交點為N(﹣1,﹣1).若要在y軸上找一點P,使得PM+PN最小,則點P的坐標為().A.(0,﹣2) B.(0,﹣) C.(0,﹣) D.(0,﹣)3.在4張相同的小紙條上分別寫上數字﹣2、0、1、2,做成4支簽,放在一個盒子中,攪勻后從中任意抽出1支簽(不放回),再從余下的3支簽中任意抽出1支簽,則2次抽出的簽上的數字的和為正數的概率為()A. B. C. D.4.下列命題正確的是()A.對角線相等四邊形是矩形B.相似三角形的面積比等于相似比C.在反比例函數圖像上,隨的增大而增大D.若一個斜坡的坡度為,則該斜坡的坡角為5.如圖,在平面直角坐標系中,M、N、C三點的坐標分別為(,1),(3,1),(3,0),點A為線段MN上的一個動點,連接AC,過點A作AB⊥AC交y軸于點B,當點A從M運動到N時,點B隨之運動,設點B的坐標為(0,b),則b的取值范圍是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤16.關于x的一元二次方程有兩個不相等的實數根,則a的取值范圍是()A.a>-1 B. C. D.a>-1且7.如圖,在圓O中,弦AB=4,點C在AB上移動,連接OC,過點C作CD⊥OC交圓O于點D,則CD的最大值為()A. B.2 C. D.8.一個不透明的袋子中有3個白球,4個黃球和5個紅球,這些球除顏色不同外,其他完全相同.從袋子中隨機摸出一個球,則它是黃球的概率是()A. B. C. D.9.已知二次函數的圖象如圖所示,下列結論:①;②;③;④.其中正確的結論是()A.①② B.①③ C.①③④ D.①②③10.如圖,正方形中,為的中點,的垂直平分線分別交,及的延長線于點,,,連接,,,連接并延長交于點,則下列結論中:①;②;③;④;⑤;⑥;⑦.正確的結論的個數為()A.3 B.4 C.5 D.611.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:112.如圖,已知在△ABC紙板中,AC=4,BC=8,AB=11,P是BC上一點,沿過點P的直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那么CP長的取值范圍是()A.0<CP≤1 B.0<CP≤2 C.1≤CP<8 D.2≤CP<8二、填空題(每題4分,共24分)13.如圖,在正方形ABCD的外側,作等邊△ABE,則∠BFC=_________°14.如圖,如果一只螞蟻從圓錐底面上的點B出發,沿表面爬到母線AC的中點D處,則最短路線長為_____.15.拋物線y=x2﹣2x+1與x軸交點的交點坐標為______.16.關于的方程=0的兩根分別是和,且=__________.17.已知正六邊形的邊心距為,則它的周長是______.18.拋物線y=2(x﹣1)2﹣5的頂點坐標是_____.三、解答題(共78分)19.(8分)如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,3),B(b,1)兩點.(1)求反比例函數的表達式;(2)在x軸上找一點P,使PA+PB的值最小,并求滿足條件的點P的坐標;(3)連接OA,OB,求△OAB的面積.20.(8分)在平面直角坐標系中,直線與雙曲線交于點A(2,a).(1)求與的值;(2)畫出雙曲線的示意圖;(3)設點是雙曲線上一點(與不重合),直線與軸交于點,當時,結合圖象,直接寫出的值.21.(8分)如圖,在△ABC中,D是BC邊上的中點,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.(1)求證:△ABC∽△FCD;(2)若S△ABC=20,BC=10,求DE的長.22.(10分)為了節省材料,某水產養殖戶利用本庫的岸堤(岸堤足夠長)為一邊,用總長為160m的圍網在水庫中圍成了如圖所示的①、②、③三塊矩形區域網箱,而且這三塊矩形區域的面積相等,設BE的長度為xm,矩形區域ABCD的面積為ym1.(1)則AE=m,BC=m;(用含字母x的代數式表示)(1)求矩形區域ABCD的面積y的最大值.23.(10分)如圖,點A的坐標是(-2,0),點B的坐標是(0,6),C為OB的中點,將△ABC繞點B逆時針旋轉90°后得到△A′BC′,若反比例函數的圖像恰好經過A′B的中點D,求這個反比例函數的解析式.24.(10分)如圖,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.25.(12分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC.(1)試判斷BC與⊙O的位置關系,并說明理由;(2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).26.解方程:x2-2x-3=0
參考答案一、選擇題(每題4分,共48分)1、A【分析】延長交延長線于點,可證,,,【詳解】解:延長交延長線于點在與中故選A【點睛】本題考查了相似三角形的性質.2、B【解析】根據線段垂直平分線的性質,可得N,′根據待定系數法,可得函數解析式,根據配方法,可得M點坐標,根據兩點之間線段最短,可得MN′,根據自變量與函數值的對應關系,可得P點坐標.【詳解】如圖,作N點關于y軸的對稱點N′,連接MN′交y軸于P點,將N點坐標代入拋物線,并聯立對稱軸,得,解得,y=x2+4x+2=(x+2)2-2,M(-2,-2),N點關于y軸的對稱點N′(1,-1),設MN′的解析式為y=kx+b,將M、N′代入函數解析式,得,解得,MN′的解析式為y=x-,當x=0時,y=-,即P(0,-),故選:B.【點睛】本題考查了二次函數的性質,利用了線段垂直平分線的性質,兩點之間線段最短得出P點的坐標是解題關鍵.3、C【分析】畫樹狀圖展示所有12種等可能的結果數,再找出2次抽出的簽上的數字和為正數的結果數,最后根據概率公式計算即可.【詳解】根據題意畫圖如下:共有12種等情況數,其中2次抽出的簽上的數字的和為正數的有6種,則2次抽出的簽上的數字的和為正數的概率為=;故選:C.【點睛】本題考查列表法與樹狀圖法、概率計算題,解題的關鍵是畫樹狀圖展示出所有12種等可能的結果數及準確找出2次抽出的簽上的數字和為正數的結果數,4、D【分析】根據矩形的判斷定理、相似三角形的性質、反比例函數的性質、坡度的定義及特殊的三角函數值解答即可.【詳解】對角線相等的平行四邊形是矩形,故A錯誤;相似三角形的面積比等于相似比的平方,故B錯誤;在反比例函數圖像上,在每個象限內,隨的增大而增大,故C錯誤;若一個斜坡的坡度為,則tan坡角=,該斜坡的坡角為,故D正確.故選:D【點睛】本題考查的是矩形的判斷定理、相似三角形的性質、反比例函數的性質、坡度的定義及特殊的三角函數值,熟練的掌握各圖形及函數的性質是關鍵.5、B【分析】延長NM交y軸于P點,則MN⊥y軸.連接CN.證明△PAB∽△NCA,得出,設PA=x,則NA=PN﹣PA=3﹣x,設PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根據二次函數的性質以及≤x≤3,求出y的最大與最小值,進而求出b的取值范圍.【詳解】解:如圖,延長NM交y軸于P點,則MN⊥y軸.連接CN.在△PAB與△NCA中,,∴△PAB∽△NCA,∴,設PA=x,則NA=PN﹣PA=3﹣x,設PB=y,∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=時,y有最大值,此時b=1﹣=﹣,x=3時,y有最小值0,此時b=1,∴b的取值范圍是﹣≤b≤1.故選:B.【點睛】本題考查了相似三角形的判定與性質,二次函數的性質,得出y與x之間的函數解析式是解題的關鍵.6、D【解析】利用一元二次方程的定義及根的判別式列不等式a≠1且△=22﹣4a×(﹣1)>1,從而求解.【詳解】解:根據題意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故選D.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數根;當△=1時,方程有兩個相等的兩個實數根;當△<1時,方程無實數根.7、B【分析】連接OD,利用勾股定理得到CD,利用垂線段最短得到當OC⊥AB時,OC最小,根據垂徑定理計算即可.【詳解】連接OD,如圖,設圓O的半徑為r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴當OC的值最小時,CD的值最大,而OC⊥AB時,OC最小,此時D、B重合,則由垂徑定理可得:CD=CB=AC=AB=1,∴CD的最大值為1.故答案為:1.【點睛】本題考查垂徑定理和勾股定理,作輔助線構造直角三角形應用勾股定理,并熟記垂徑定理內容是解題的關鍵.8、B【分析】利用概率公式直接計算即可.【詳解】解:根據題意可得:袋子中有有3個白球,4個黃球和5個紅球,共12個,從袋子中隨機摸出一個球,它是黃色球的概率.故選B.【點睛】本題考查概率的計算,掌握公式正確計算是本題的解題關鍵.9、C【分析】由拋物線開口方向得到a>0,由拋物線的對稱軸方程得到b=-2a,則可對①②進行判斷;利用判別式的意義可對③進行判斷;利用平方差公式得到(a+b)2-b2=(a+b-b)(a+b+b),然后把b=-2a代入可對④進行判斷.【詳解】∵拋物線開口向上,
∴a>0,
∵拋物線的對稱軸為直線x=-=1,
∴b=-2a<0,所以①正確;
∴b+2a=0,所以②錯誤;
∵拋物線與x軸有2個交點,
∴△=b2-4ac>0,所以③正確;
∵(a+b)2-b2=(a+b-b)(a+b+b)=a(a+2b)=a(a-4a)=-3a2<0,
∴(a+b)2<b2,所以④正確.
故選:C.【點睛】考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置.當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c).拋物線與x軸交點個數由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.10、B【分析】①作輔助線,構建三角形全等,證明△ADE≌△GKF,則FG=AE,可得FG=2AO;②設正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,證明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判斷;③分別表示出OD、OC,根據勾股定理逆定理可以判斷;④證明∠HEA=∠AED=∠ODE,OE≠DE,則∠DOE≠∠HEA,OD與HE不平行;
⑤由②可得,根據AR∥CD,得,則;⑥證明△HAE∽△ODE,可得,等量代換可得OE2=AH?DE;⑦分別計算HC、OG、BH的長,可得結論.【詳解】解:①如圖,過G作GK⊥AD于K,
∴∠GKF=90°,
∵四邊形ABCD是正方形,
∴∠ADE=90°,AD=AB=GK,
∴∠ADE=∠GKF,
∵AE⊥FH,
∴∠AOF=∠OAF+∠AFO=90°,
∵∠OAF+∠AED=90°,
∴∠AFO=∠AED,
∴△ADE≌△GKF,
∴FG=AE,
∵FH是AE的中垂線,
∴AE=2AO,
∴FG=2AO,
故①正確;②設正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;
故②正確;③,,∴,∴OC與OD不垂直,故③錯誤;
④∵FH是AE的中垂線,
∴AH=EH,
∴∠HAE=∠HEA,
∵AB∥CD,
∴∠HAE=∠AED,
Rt△ADE中,∵O是AE的中點,
∴OD=AE=OE,
∴∠ODE=∠AED,
∴∠HEA=∠AED=∠ODE,
當∠DOE=∠HEA時,OD∥HE,
但AE>AD,即AE>CD,
∴OE>DE,即∠DOE≠∠HEA,
∴OD與HE不平行,
故④不正確;
⑤由②知BH=,,延長CM、BA交于R,
∵RA∥CE,
∴∠ARO=∠ECO,
∵AO=EO,∠ROA=∠COE,
∴△ARO≌△ECO,
∴AR=CE,
∵AR∥CD,,故⑤正確;
⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,
∴△HAE∽△ODE,∵AE=2OE,OD=OE,
∴OE?2OE=AH?DE,
∴2OE2=AH?DE,
故⑥正確;
⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,
故⑦不正確;
綜上所述,本題正確的有;①②⑤⑥,共4個,
故選:B.【點睛】本題是相似三角形的判定與性質以及勾股定理、線段垂直平分線的性質、正方形的性質的綜合應用,正確作輔助線是關鍵,解答時證明三角形相似是難點.11、B【分析】可證明△DFE∽△BFA,根據相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.12、B【分析】分四種情況討論,依據相似三角形的對應邊成比例,即可得到AP的長的取值范圍.【詳解】如圖所示,過P作PD∥AB交AC于D或PE∥AC交AB于E,則△PCD∽△BCA或△BPE∽△BCA,此時0<PC<8;如圖所示,過P作∠BPF=∠A交AB于F,則△BPF∽△BAC,此時0<PC<8;如圖所示,過P作∠CPG=∠B交AC于G,則△CPG∽△CAB,此時,△CPG∽△CBA,當點G與點A重合時,CA1=CP×CB,即41=CP×8,∴CP=1,∴此時,0<CP≤1;綜上所述,CP長的取值范圍是0<CP≤1.故選B.【點睛】本題主要考查了相似三角形的性質,解決本題的關鍵是要熟練掌握相似三角形的性質.二、填空題(每題4分,共24分)13、1【解析】根據正方形的性質及等邊三角形的性質求出∠ADE=15°,∠DAC=45°,再求∠DFC,證△DCF?△BCF,可得∠BFC=∠DFC.【詳解】∵四邊形ABCD是正方形,
∴AB=AD=CD=BC,∠DCF=∠BCF=45°
又∵△ABE是等邊三角形,
∴AE=AB=BE,∠BAE=1°
∴AD=AE
∴∠ADE=∠AED,∠DAE=90°+1°=150°
∴∠ADE=(180°-150°)÷2=15°
又∵∠DAC=45°
∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF?△BCF∴∠BFC=∠DFC=1°
故答案為:1.【點睛】本題主要是考查了正方形的性質和等邊三角形的性質,本題的關鍵是求出∠ADE=15°.14、3.【分析】將圓錐側面展開,根據“兩點之間線段最短”和勾股定理,即可求得螞蟻的最短路線長.【詳解】如圖將圓錐側面展開,得到扇形ABB′,則線段BF為所求的最短路線.設∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E為弧BB′中點,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路線長為3.故答案為:3.【點睛】本題考查“化曲面為平面”求最短路徑問題,屬中檔題.15、(1,0)【分析】通過解方程x2-2x+1=0得拋物線與x軸交點的交點坐標.【詳解】解:當y=0時,x2﹣2x+1=0,解得x1=x2=1,所以拋物線與x軸交點的交點坐標為(1,0).故答案為:(1,0).【點睛】本題考查拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.16、2【分析】根據一元二次方程根與系數的關系即可解答.【詳解】∵方程=0的兩根分別是和,∴,,∴=,故答案為:2.【點睛】此題考查根與系數的關系,熟記兩個關系式并運用解題是關鍵.17、12【分析】首先由題意畫出圖形,易證得△OAB是等邊三角形,又由正六邊形的邊心距利用三角函數的知識即可求得OA的長,即可得AB的長,繼而求得它的周長.【詳解】如圖,連接OA,OB,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,∵OA=OB,∴△OAB是等邊三角形,∴∠OAH=60°,∵OH⊥A,OH=,∴,∴AB=OA=2,∴它的周長是:2×6=12考點:正多邊形和圓點評:此題考查了圓的內接正多邊形的性質.此題難度不大,注意數形結合思想的應用18、(1,﹣5)【分析】根據二次函數的頂點式即可求解.【詳解】解:拋物線y=2(x﹣1)2﹣5的頂點坐標是(1,﹣5).故答案為(1,﹣5).【點睛】本題考查了頂點式對應的頂點坐標,頂點式的理解是解題的關鍵三、解答題(共78分)19、(1);(2)點P的坐標為(﹣,0);(3)1【分析】(1)根據待定系數法,即可得到答案;(2)先求出點B的坐標,作點B關于x軸的對稱點D,連接AD,交x軸于點P,此時PA+PB的值最小,再求出AD所在直線的解析式,進而即可求解;(3)設直線AB與y軸交于E點,根據S△OAB=S△OBE﹣S△AOE,即可求解.【詳解】(1)將點A(﹣1,3)代入y=得:3=,解得:k=﹣3,∴反比例函數的表達式為:y=﹣;(2)把B(b,1)代入y=x+1得:b+1=1,解得:b=﹣3,∴點B的坐標為(﹣3,1),作點B關于x軸的對稱點D,連接AD,交x軸于點P,此時PA+PB的值最小,如圖,∵點B的坐標為(﹣3,1),∴點D的坐標為(﹣3,﹣1).設直線AD的函數表達式為:y=mx+n,將點A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n,得,解得,∴直線AD的函數表達式為:y=2x+5,當y=0時,2x+5=0,解得:x=﹣,∴點P的坐標為(﹣,0);(3)設直線AB與y軸交于E點,如圖,令x=0,則y=0+1=1,則點E的坐標為(0,1),∴S△OAB=S△OBE﹣S△AOE=×1×3﹣×1×1=1.【點睛】本題主要考查反比例函數的圖象和性質與一次函數的綜合,掌握“馬飲水”模型和割補法求面積,是解題的關鍵.20、(1),;(2)示意圖見解析;(3)6,.【分析】(1)把點A(2,a)代入直線解析式求出a,再把A(2,a)代入雙曲線求出k即可;(2)先列表,再描點,然后連線即可;(3)利用數形結思想觀察圖形即可得到答案.【詳解】(1)∵直線過點,∴.又∵雙曲線()過點A(2,2),∴.(2)列表如下:x…-4-2-1124…y…-1-2-4421…描點,連線如下:(3)6,.①當點P在第一象限時,如圖,過點A作AC⊥y軸于點C,過點P作PD⊥y軸于點D,則△BDP∽△BCA,∴=∵點A(2,2),∴AC=2,OC=2.∴PD=1.即m=1,當m=1時,n=.即OD=4,∴CD=OD-OC=2.∴BD=CD=2.∴OB=BD+OD=6即b=6.②當點p在第三象限時,如圖,過點A作AC⊥y軸于點C,過點P作PD⊥y軸于點D,則△BDP∽△BCA,∴=∵點A(2,2),∴AC=2,OC=2.∴PD=1.∵點p在第三象限,∴m=-1,當m=-1時,n=-4,∴OD=4,∵BD=OD-OB=4+b,CD=OC+OB=2-b,∴解得,b=-2.綜上所述,b的值為6或-2.【點睛】本題考查了一次函數與反比例函數的綜合,掌握相關知識是解題的關鍵.21、(1)見解析;(2)【分析】(1)根據題目條件證明和,利用兩組對應角相等的三角形相似,證明;(2)過點A作于點M,先通過的面積求出AM的長,根據得到,再算出DE的長.【詳解】解:(1)∵,∴,∵D是BC邊上的中點且∴,∴,∴;(2)如圖,過點A作于點M,∵,∴,解得,∵,,∴,∵,∴,∵,,∴,∴,∴.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是熟練掌握相似三角形的性質和判定定理.22、(1)1x,(80﹣4x);(1)1100m1.【分析】(1)根據三個矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的1倍,可得出AE=1BE,設BE=x,則有AE=1x,BC=80﹣4x;(1)利用二次函數的性質求出y的最大值,以及此時x的值即可.【詳解】(1)設BE的長度為xm,則AE=1xm,BC=(80﹣4x)m,故答案為:1x,(80﹣4x);(1)根據題意得:y=3x(80﹣4x)=﹣11x1+140x=﹣11(x﹣10)1+1100,因為﹣11,所以當x=10時,y有最大值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校燃安全管理制度
- 學校課后班管理制度
- 安保室衛生管理制度
- 安全設備科管理制度
- 安防中控室管理制度
- 定制家具廠管理制度
- 實訓室倉庫管理制度
- 審批程序等管理制度
- 客車gps管理制度
- 宮腔鏡檢查管理制度
- (2024年)健康評估教學教案心電圖檢查教案
- 方法模型:展開圖、還原立體圖形
- 2023年廣東省中考生物試卷(含答案)
- 大學生職業生涯發展規劃智慧樹知到期末考試答案2024年
- 小學數學“組題”設計分析 論文
- 中央空調維護保養服務投標方案(技術標)
- 社會工作學習資料
- 初三數學-中考模擬試卷
- 工程倫理 課件全套 李正風 第1-9章 工程與倫理、如何理解倫理- 全球化視野下的工程倫理
- 肝內膽管癌護理查房課件
- 高速鐵路工務故障預防與處理措施
評論
0/150
提交評論