


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,在邊上滿足,為的中點,則().A. B. C. D.2.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-14.已知函數,,且,則()A.3 B.3或7 C.5 D.5或85.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.326.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.47.已知某口袋中有3個白球和個黑球(),現從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數是.若,則=()A. B.1 C. D.28.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.9.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.10.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.11.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.12.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程是_________.14.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.15.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸的概率是_____.16.已知等差數列的前n項和為Sn,若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,與是處在同-個平面內的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.18.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.19.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.20.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數據繪制成2×2聯表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數為,求的分布列及數學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知函數,函數,其中,是的一個極值點,且.(1)討論的單調性(2)求實數和a的值(3)證明22.(10分)金秋九月,丹桂飄香,某高校迎來了一大批優秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統計數據如下:愿意不愿意男生6020女士4040(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.828
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】
由,可得,,再將代入即可.【題目詳解】因為,所以,故.故選:B.【答案點睛】本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.2、C【答案解析】
根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【題目詳解】解:若{an}是等比數列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【答案點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.3、B【答案解析】
由題意,代入解方程即可得解.【題目詳解】由題意,所以,且,解得.故選:B.【答案點睛】本題考查了利用向量的數量積求向量的夾角,屬于基礎題.4、B【答案解析】
根據函數的對稱軸以及函數值,可得結果.【題目詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【答案點睛】本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題5、A【答案解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.6、C【答案解析】
由二項式系數性質,的展開式中所有二項式系數和為計算.【題目詳解】的二項展開式中二項式系數和為,.故選:C.【答案點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.7、B【答案解析】由題意或4,則,故選B.8、C【答案解析】
需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【題目詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【答案點睛】本題考查拋物線的幾何性質,三角函數的性質,數形結合思想,轉化與化歸思想,屬于中檔題9、B【答案解析】
首先求得兩曲線的交點坐標,據此可確定積分區間,然后利用定積分的幾何意義求解面積值即可.【題目詳解】聯立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【答案點睛】本題主要考查定積分的概念與計算,屬于中等題.10、B【答案解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【題目詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【答案點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.11、C【答案解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【題目詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【答案點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.12、D【答案解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【題目詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【答案點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
利用導數的運算法則求出導函數,再利用導數的幾何意義即可求解.【題目詳解】求導得,所以,所以切線方程為故答案為:【答案點睛】本題考查了基本初等函數的導數、導數的運算法則以及導數的幾何意義,屬于基礎題.14、【答案解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【題目詳解】由得,即聯立得解得或,∴.故答案為:.【答案點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.15、【答案解析】乙不輸的概率為,填.16、【答案解析】
由,,成等差數列,代入可得的值.【題目詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【答案點睛】本題主要考查等差數列前n項和的性質,相對不難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【答案解析】
根據折疊圖形,,由線面垂直的判定定理可得平面,再根據平面,得到.(2)根據,以為坐標原點,為軸建立空間直角坐標系,根據,可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面積由,再利用導數求最值.【題目詳解】(1)證明:不妨設與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設平面與平面的法向量分別為則有則所以因為,解得設所求幾何體的體積為,設,則,當時,,當時,在是增函數,在上是減函數當時,有最大值,即六面體的體積的最大值是【答案點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉化,二面角的向量求法和空間幾何體的體積,還考查了轉化化歸的思想和運算求解的能力,屬于難題.18、(1);(2).【答案解析】
(1)平面平面,建立坐標系,根據法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【題目詳解】(1)如圖,以為原點,在平面內垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【答案點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.19、(1)證明見解析;(2).【答案解析】
(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點A到平面的距離,然后根據棱錐的體積公式即可求出四棱錐的體積.【題目詳解】(1)連接,由是平行四邊形及N是的中點,得N也是的中點,因為點M是的中點,所以,因為,所以,又,,所以平面,又平面,所以平面平面;(2)過A作交于點O,因為平面平面,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側面為矩形,所以.【答案點睛】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.20、(Ⅰ)填表見解析,有95%以上的把握認為“性別”與“問卷結果”有關;(Ⅱ)分布列見解析,【答案解析】
(Ⅰ)根據莖葉圖填寫列聯表,計算得到答案.(Ⅱ),計算,,,得到分布列,再計算數學期望得到答案.【題目詳解】(Ⅰ)根據莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認為“性別”與“問卷結果””有關.(Ⅱ)從莖葉圖可知,成績在60分以下(不含60分)的男女學生人數分別是4人和2人,從中任意選2人,基本事件總數為,,,,012.【答案點睛】本題考查了獨立性檢驗,分布列,數學期望,意在考查學生的綜合應用能力.21、(1)在區間單調遞增;(2);(3)證明見解析.【答案解析】
(1)求出,在定義域內,再次求導,可得在區間上恒成立,從而可得結論;(2)由,可得,由可得,聯立解方程組可得結果;(3)由(1)知在區間單調遞增,可證明,取,可得,而,利用裂項相消法,結合放縮法可得結果.【題目詳解】(1)由已知可得函數的定義域為,且,令,則有,由,可得,可知當x變化時,的變化情況如下表:1-0+極小值,即,可得在區間單調遞增;(2)由已知可得函數的定義域為,且,由已知得,即,①由可得,,②聯立①②,消去a,可得,③令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年美發師中級實操考核試卷:美發行業市場趨勢分析試題
- 2025年無損檢測員(中級)無損檢測報告編制與審核試卷
- 2025年寵物美容師職業技能考核試卷:寵物美容師創新設計與個性化服務試題
- 2025年美發師創意發型設計與操作考核試卷
- 2025年美發師創意造型考核試卷:時尚潮流美發設計與創新思維試題
- 局內部安全管理制度
- 科研預算調整管理制度
- 石油作業健康管理制度
- 編制施工安全管理制度
- 老年活動團隊管理制度
- 2024年中國建筑西南勘察設計研究院有限公司招聘筆試參考題庫含答案解析
- DG-TJ08-2433A-2023 外墻保溫一體化系統應用技術標準(預制混凝土反打保溫外墻)
- 教師法制教育培訓課件
- 眾包物流模式下的資源整合與分配
- 鐵路貨運流程課件
- 四川省成都市成華區2023-2024學年七年級上學期期末數學試題(含答案)
- 慢性硬膜下血腫護理要點大揭秘
- 管工基礎知識培訓課件
- 成人氣管切開拔管中國專家共識解讀
- “微”力量微博營銷
- 2022-2023學年山東省菏澤市成武縣人教版四年級下冊期末考試數學試卷(解析版)
評論
0/150
提交評論