



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則,不可能滿足的關系是()A. B. C. D.2.設,,則()A. B.C. D.3.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.4.記個兩兩無交集的區間的并集為階區間如為2階區間,設函數,則不等式的解集為()A.2階區間 B.3階區間 C.4階區間 D.5階區間5.已知函數,若,使得,則實數的取值范圍是()A. B.C. D.6.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.7.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.9.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm310.已知是第二象限的角,,則()A. B. C. D.11.已知函數,若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)12.“一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發展我國與沿線國家經濟合作關系,共同打造政治互信、經濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.15.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.某校在周末學生業余興趣活動中開展了“六藝”知識講座,每藝安排一節,連排六節,則滿足“禮”與“樂”必須排在前兩節,“射”和“御”兩講座必須相鄰的不同安排種數為________.16.已知△ABC得三邊長成公比為2的等比數列,則其最大角的余弦值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.18.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.19.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.20.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面平面;(2)求二面角的余弦值.21.(12分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.22.(10分)設函數,,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數在區間上的取值范圍.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
根據即可得出,,根據,,即可判斷出結果.【題目詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【答案點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題2、D【答案解析】
由不等式的性質及換底公式即可得解.【題目詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【答案點睛】本題考查了不等式的性質及換底公式,屬基礎題.3、C【答案解析】
根據平面向量基本定理,用來表示,然后利用數量積公式,簡單計算,可得結果.【題目詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【答案點睛】本題考查平面向量基本定理以及數量積公式,掌握公式,細心觀察,屬基礎題.4、D【答案解析】
可判斷函數為奇函數,先討論當且時的導數情況,再畫出函數大致圖形,將所求區間端點值分別看作對應常函數,再由圖形確定具體自變量范圍即可求解【題目詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變為,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區間.故選:D【答案點睛】本題考查由函數的奇偶性,單調性求解對應自變量范圍,導數法研究函數增減性,數形結合思想,轉化與化歸思想,屬于難題5、C【答案解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數的最小值為,當時,為單調遞增函數,所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數的綜合問題.【方法點晴】本題主要考查了函數的綜合問題,其中解答中涉及到基本不等式求最值、函數的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.6、C【答案解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【題目詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【答案點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.7、A【答案解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【題目詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【答案點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.8、A【答案解析】
觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【題目詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【答案點睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。9、B【答案解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.10、D【答案解析】
利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【題目詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【答案點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.11、C【答案解析】
利用導數求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【題目詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C【答案點睛】本小題主要考查利用導數研究函數的單調性,考查利用函數的單調性比較大小,考查數形結合的數學思想方法,屬于中檔題.12、D【答案解析】
根據統計圖中數據的含義進行判斷即可.【題目詳解】對A項,由統計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統計圖可得,2015年出口額最少,則B正確;對C項,由統計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【答案點睛】本題主要考查了根據條形統計圖和折線統計圖解決實際問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】
由求出,代入,進行數量積的運算即得.【題目詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【答案點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.14、【答案解析】
根據圓的性質可知在線段的垂直平分線上,由此得到,同理可得,由對數運算法則可知,從而化簡得到,由此確定軌跡方程.【題目詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【答案點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質和對數運算法則構造出滿足的方程,由此得到結果.15、【答案解析】
分步排課,首先將“禮”與“樂”排在前兩節,然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【題目詳解】第一步:先將“禮”與“樂”排在前兩節,有種不同的排法;第二步:將“射”和“御”兩節講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節,“射”和“御”兩節講座必須相鄰的不同安排種數為.故答案為:1.【答案點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.16、-【答案解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數列的定義.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(文)(理)【答案解析】
(1)證明:取PD中點G,連結GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內,AG在平面PAD內,∴EF∥面PAD;(2)(文)解:取AD中點O,連結PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F為PC中點,∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內的直線平行于另一平面.本題(1)是就是利用方法①證明的.18、(1)見解析(2)【答案解析】試題分析:(1)根據已知條件由線線垂直得出線面垂直,再根據面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據線面角公式代入坐標求得結果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設,則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標系,則,∴,所以,設為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.19、(1),(2)最大值,最小值【答案解析】
(1)由曲線的參數方程,得兩式平方相加求解,根據直線的極坐標方程,展開有,再根據求解.(2)因為曲線C是一個半圓,利用數形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【題目詳解】(1)因為曲線的參數方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【答案點睛】本題主要考查參數方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.20、(1)見解析;(2)【答案解析】
(1)取中點,中點,連接,,.設交于,則為的中點,連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【題目詳解】(1)取中點,中點,連接,,.設交于,則為的中點,連接.設,則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標系,設,則,,,,,,,,設平面的法向量為,∴,令得.設平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【答案點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1),單調性見解析;(2)不存在,理由見解析【答案解析】
(1)由題意得,即可得;求出函數的導數,再根據、、、分類討論,分別求出、的解集即可得解;(2)假設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司演講感悟活動方案
- 公司新年大掃除活動方案
- 公司朗讀活動方案
- 2025年藥劑師執業資格考試試卷及答案
- 2025年新媒體與網絡傳播課程核心知識考試試題及答案
- 2025年現代經濟學與區域發展考試試卷及答案
- 2025年數字圖書館建設與管理專業模擬考試卷及答案
- 2025年人際關系與溝通能力考試試題及答案
- 2025年數字版權管理師考試試卷及答案
- 2025年去中心化金融領域職業資格測試題及答案
- 2025屆中考化學預熱模擬卷 【吉林專用】
- 小學生籃球課課件下載
- 2025年中國AI智能鼠標行業市場全景分析及前景機遇研判報告
- 2025年湖北省新華書店(集團)有限公司市(縣)分公司招聘筆試參考題庫含答案解析
- 2025至2030中國軍用推進劑和炸藥行業產業運行態勢及投資規劃深度研究報告
- EPC總承包管理實施方案
- 廣東省廣州市越秀區2023-2024學年五年級下學期數學期末考試試卷(含答案)
- 三副實習記錄簿附頁
- 工程認證背景下軟件工程專業實踐課程平臺研究與建設
- 2025年AI Agent+醫療行業研究報告
- 2025年江蘇南京市河西新城區國有資產經營控股集團招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論