




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、安徽省201年高考理科數學試題及答案(Word版)(考試時間:120分鐘試卷滿分:150分)注意事項:1 .答卷前,考生務必將自己的姓名、考生號等填寫在答題卡和試卷指定位置上。2 .回答選擇題時,選出每小題答案后,用鉛筆把答題卡對應題目的答案標號涂黑。如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上。寫在本試卷上無效。3 .考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。、一1-i,1.設z=+2i,則|z|=1 iA.0B.1C.1D.222.已知集合A=kx2-x-2
2、>0則eRA=A.x-1<x<2B.x-1xW2C.tx|x1:IJtx|x2/D.1x|x<-1IJlx|x_2)3.某地區經過一年的新農村建設,農村的經濟收入增加了一倍,實現翻番,為更好地了解該地區農村的經濟收入變化情況,統計了該地區新農村建設前后農村的經濟收入構成比例,得到如下餅圖:建設后經濟收入構成比例建設前經濟收入構成比例則下面結論中不正確的是A.新農村建設后,種植收入減少B.新農村建設后,其他收入增加了一倍以上C.新農村建設后,養殖收入增加了一倍D.新農村建設后,養殖收入與第三產業收入的總和超過了經濟收入的一半4.設Sn為等差數列4的前n項和,若3s3=S2
3、+S4,a1=2,則a5=A.-125.設函數f(x)=x3+(a-1)x2+ax,若f(x)為奇函數,則曲線f(x)在點(0,0)處的切線方程為A. y-2xB. y=-xC. y=2xD.6.在AABC中,AD為BC邊上的中線,E為AD的中點,則點=a.3AB-1AC1T3V3T1VBAB-ACC.-ABAC7.某圓柱的高為2,底面周長為16,其三視圖如圖.圓柱表面上的點在正視圖上的對應點為A,圓柱表面上的點N在左視圖上的對應點為B,則在此圓柱側面上,從M到N的路徑中,最短路徑的長度為A.2,17B.F,過點(-2,0)且斜率為BD.2A.5C:y2=4x的焦點為B.6C.7D.8TC父于
4、MN兩點,則FMFN9.已知函數e,x三0,f(x)=£g(x)=f(x)+x+a.lnx,x0,若g(x)存在2個零點,則a的取值范圍0)B. 0,+8)C. -1,+8)D.1,+8)C.1010.下圖來自古希臘數學家希波克拉底所研究的幾何圖形.此圖由三個半圓構成,三個半圓的直徑分別為直角三角形ABC勺斜邊BC直角邊ARACABC勺三邊所圍成白區域記為I,黑色部分記為II,其余部分記為III.在整個圖形中隨機取一點,此點取自I,II,III的概率分別記為pi,p2,p3,則A.pi=P2B.pi=P3C.P2=P3D.pi=p2+p3211.已知雙曲線C8_y2=1,O為坐標原點
5、,F為C的右焦點,過F的直線與C的兩條漸近線的3交點分別為MN.若4OM由直角三角形,則|M仲A.3B.3C23D.4212.已知正方體的棱長為1,每條棱所在直線與平面”所成的角相等,則a截此正方體所得截面面積的最大值為A.3-3BC32D,由4342二、填空題:本題共4小題,每小題5分,共20分。x-2y-2<013 .若x,y滿足約束條件x-y+1>0,則z=3x+2y的最大值為.yM014 .記a為數列aj的前n項和,若&=2an+1,則&=.15 .從2位女生,4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有種.(用數字填寫答案)16 .
6、已知函數f(x)=2sinx+sin2x,則f(x)的最小值是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。第1721題為必考題,每個試題考生都必須作答。第22、23題為選考題,考生根據要求作答。(一)必考題:60分。17 .(12分)在平面四邊形ABCD中,/ADC=90,,/A=45,,AB=2,BD=5.(1)求cos/ADB;(2)若DC=2衣,求BC.18 .(12分)如圖,四邊形ABCD為正方形,E,F分別為AD,BC的中點,以DF為折痕把4DFC折起,使點C到達點P的位置,且PF_LBF.(1)證明:平面PEF_L平面ABFD;(2)求DP與平面ABFD所成角的
7、正弦值19 .(12分)2設橢圓C:土十y2=1的右焦點為F,過F的直線l與C交于A,B兩點,點M的坐標為(2,0).2(1)當l與x軸垂直時,求直線AM的方程;(2)設O為坐標原點,證明:ZOMA=/OMB.20 .(12分)某工廠的某種產品成箱包裝,每箱200件,每一箱產品在交付用戶之前要對產品作檢驗,如檢驗出不合格品,則更換為合格品.檢驗時,先從這箱產品中任取20件作檢驗,再根據檢驗結果決定是否對余下的所有產品作檢驗,設每件產品為不合格品的概率都為p(0<p<1),且各件產品是否為不合格品相互獨立.(1)記20件產品中恰有2件不合格品的概率為f(p),求f(p)的最大值點p0
8、.(2)現對一箱產品檢驗了20件,結果恰有2件不合格品,以(1)中確定的Po作為p的值.已知每件產品的檢驗費用為2元,若有不合格品進入用戶手中,則工廠要對每件不合格品支付25元的賠償費用.(i)若不對該箱余下的產品作檢驗,這一箱產品的檢驗費用與賠償費用的和記為X,求EX;(ii)以檢驗費用與賠償費用和的期望值為決策依據,是否該對這箱余下的所有產品作檢驗?21 .(12分)1已知函數f(x)=x+alnx.x(1)討論f(x)的單調性;(2)若f(x)存在兩個極值點X1,x2,證明:f尸f(x2'a2.x1-X2(二)選考題:共10分。請考生在第22、23題中任選一題作答,如果多做,則按
9、所做的第一題計分。22 .選彳4-4:坐標系與參數方程(10分)在直角坐標系xOy中,曲線Ci的方程為y=k|x|+2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為P2+2Pcos6-3=0.(1)求C2的直角坐標方程;(2)若Ci與C2有且僅有三個公共點,求Ci的方程.23 .選彳4-5:不等式選講(10分)已知f(x)=|x1|-|ax-1|.(1)當a=1時,求不等式f(x)>1的解集;(2)若xw(0,1)時不等式f(x)>x成立,求a的取值范圍.參考答案9101112CABA13.614.-6315.1616.3.317.(12分)解:(1)在z
10、XABD中,由正弦定理得BDAB18.sin乙Asin.ADB5由題設知,一sin45sin.ADB由題設知,ZADB<90°,所以cos/ADB=1.225(2)由題設及(1)知,cos/BDC=sin/ADB=-5在BCD中,由余弦定理得_22_2BC=BDDC-2BDDCcosBDC二258-2522-25.所以BC=5.(12分)解:(1)由已知可得,BF,PF,BF,EF,所以BF,平面PEF又BF仁平面ABFD所以平面PEn平面ABFD(2)作PHLEF,垂足為H.由(1)得,PHL平面ABFD建立如圖所示的空間直角坐標系以H為坐標原點,HF的方向為y軸正方向,|B
11、F|為單位長,H-xyz.由(1)可得,DELPE又DP=2,DE=1,所以PE=J3.又PF=1,EF=2,故PELPF33可得PH=,EH=一.22._,3_3-33F3則H(0,0,0),P(0,0,),D(-1,-,0),DP=(1,q,T),HP=(0,0,)為平面ABFD勺法向量.設DP與平面ABF所成角為日,則sin日=|用'%|=阜=立.|HP|DP|J34、3所以DP與平面ABF前成角的正弦值為.419. (12分)解:(1)由已知得F(1,0),l的方程為x=1.22由已知可得,點A的坐標為(12)或(1-).,2,2所以AM的方程為y=-一2x,或y="
12、x-、.2.22(2)當l與x軸重合時,/OMA=NOMB=0*.當l與x軸垂直時,O加AB的垂直平分線,所以/OMA=2OMB.當l與x軸不重合也不垂直時,設l的方程為y=k(x1)(k=0),A(x1,y1),B(x2,y2),則Xi2,x2.2,直線MAMB勺斜率之和為kMA.kMB='-Xi-2X2-2由y1=kx1-k,y2=kx2-k得kMA'kMB2kx1x2-3k(x,x2)4k(x1-12)(x2-i2)2將y=k(x_1)代入土+y2=1得2(2k21)x2-4k2x2k2-2=0.所以,4k22k2-2x1x2-2,x1x2=22k212k21則2kxix
13、2-3k(x1x2)4k=4k3-4k-12k38k34k_22k1從而kMA+kMB=0,故MAMB勺傾斜角互補,所以/OMA=/OMB.綜上,OMA=,OMB.20. (12分)解:(1)20件產品中恰有2件不合格品的概率為f(p)=C20P2(1p)18.因此f(p)=C202p(1-P)18-18p2(1-P)17=2C20P(1-p)17(1-10p).令f(p)=0,得p=0.1.當pw(0,0.1)時,f'(p)>0;當pw(0.1,1)時,f'(p)<0.所以f(p)的最大值點為p0=0.1.(2)由(1)知,p=0.1.(i)令Y表示余下的180件
14、產品中的不合格品件數,依題意知Y:B(180,0.1),X=20父2+25丫,即X=40+25Y.所以EX=E(4025Y)=4025EY=490.400元.x2-ax1(ii)如果對余下的產品作檢驗,則這一箱產品所需要的檢驗費為由于EX>400,故應該對余下的產品作檢驗21. (12分)1a解:(1)f(x)的定義域為(0,),f'(x)=1+=(i)若a<2,則f'(x)M0,當且僅當a=2,x=1時f'(x)=0,所以f(x)在(0,也)單調a-a-4a-.a-4(II)右2>2,令f(x)=0倚,x=或x=當x(0,a-.a2-4)U(a,,不
15、f'(x)<0;f(x)f(x)在(0,),(a-a2-4收)單調遞減,在a,a2一4,)單調遞增.(2)由(1)知,f(x)存在兩個極值點當且僅當由于由于f(xi)-f(x2)11nx1-1nx21nx1-1nx2-1a=-2a=-2a。21nx2xi-x2xi-x21一x2X22一.f(x)的兩個極值點x1,x2滿足xax+1=0,所以x1x2=1,不妨設x1<x2,則x2>1.1設函數g(x)=x+21nx,x1所以-x2+21nx2<0,即f(x1)-f(x2):a-2.X2xi-x222.選彳4-4:坐標系與參數方程(10分)f(x1)-f(x2)人/
16、1所以<a-2等價于-x2+21nx2<0.x2xi-x2由(1)知,g(x)在(0,)單調遞減,又g(1)=0,從而當x三(1,+笛)時,g(x)<0.【解析】(1)由x=PcosH,y=Psin日得C2的直角坐標方程為(x十1)2十y2=4.由(1)知C2是圓心為A(1,0),半徑為2的圓.由題設知,C1是過點B(0,2)且關于y軸對稱的兩條射線.記y軸右邊的射線為11,y軸左邊的射線為12.由于B在圓C2的外面,故Ci與C2有且僅有三個公共點等價于1i與C2只有一個公共點且12與C2有兩個公共點,或12與C2只有一個公共點且11與C2有兩個公共點.當ll與C2只有一個公共點時,A到li所在直線的距離為|-k2|c2,所以j=2,k21k=,或3k=0.l2與C2有4.一經檢驗,當k=0時,li與C2沒有公共點;當k=-時,li與C2只有一個公共點,3兩個公共點.|k-2|當l2與C2只有一個公共點時,A到l2所在直線的距離為2,所以=2,k14經檢驗,當k=0時,li與C2沒有公共點;當k=g時,l2與C2沒有公共點.4,一綜上,所求Ci的萬程為y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021-2026年中國高端采煤機市場供需現狀及投資戰略研究報告
- 中國號角揚聲器行業市場調研分析及投資戰略咨詢報告
- 2025年中國周林頻譜儀行業發展現狀與投資戰略規劃可行性報告
- 中國塑料型材市場供需預測調查咨詢報告
- 鎂及鎂合金項目可行性研究報告
- 造價工程培訓課件
- 球團廠安全培訓課件
- 中國現磨豆漿機行業發展前景預測及投資規劃建議報告
- 寵物注射電子標簽項目投資可行性研究分析報告(2024-2030版)
- 中國蛋雞養殖行業市場發展監測及投資戰略咨詢報告
- 機械制圖教案(完整版)
- 工業互聯網與智能制造
- 司母戊鼎的介紹
- 肺炎衣原體醫學課件
- 2024年兒童童車行業分析報告及未來發展趨勢
- 23秋國家開放大學《漢語基礎》期末大作業(課程論文)參考答案
- 《公務接待》課件
- 中醫內科學消渴課件
- 《新能源汽車動力電池及管理系統檢修》 課件 模塊3 新能源汽車動力電池PACK檢修
- 工藝知識培訓課件
- 公司關停并轉方案
評論
0/150
提交評論