




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、程序員的數據庫性能優化 面向程序員的數據庫訪問性能優化法則 特別說明:1、 本文只是面對數據庫應用開發的程序員,不適合專業DBA,DBA在數據庫性能優化方面需要了解更多的知識;2、 本文許多示例及概念是基于Oracle數據庫描述,對于其它關系型數據庫也可以參考,但許多觀點不適合于KV數據庫或內存數據庫或者是基于SSD技術的數據庫;3、 本文未深入數據庫優化中最核心的執行計劃分析技術。 讀者對像:開發人員:如果你是做數據庫開發,那本文的內容非常適合,因為本文是從程序員的角度來談數據庫性能優化。架構師:如果你已經是數據庫應用的架構師,那本文的
2、知識你應該清楚90%,否則你可能是一個喜歡折騰的架構師。DBA(數據庫管理員):大型數據庫優化的知識非常復雜,本文只是從程序員的角度來談性能優化,DBA除了需要了解這些知識外,還需要深入數據庫的內部體系架構來解決問題。 引言在網上有很多文章介紹數據庫優化知識,但是大部份文章只是對某個一個方面進行說明,而對于我們程序員來說這種介紹并不能很好的掌握優化知識,因為很多介紹只是對一些特定的場景優化的,所以反而有時會產生誤導或讓程序員感覺不明白其中的奧妙而對數據庫優化感覺很神秘。很多程序員總是問如何學習數據庫優化,有沒有好的教材之類的問題。在書店也看到了許多數據庫優化的專業書籍,但是感覺更多是
3、面向DBA或者是PL/SQL開發方面的知識,個人感覺不太適合普通程序員。而要想做到數據庫優化的高手,不是花幾周,幾個月就能達到的,這并不是因為數據庫優化有多高深,而是因為要做好優化一方面需要有非常好的技術功底,對操作系統、存儲硬件網絡、數據庫原理等方面有比較扎實的基礎知識,另一方面是需要花大量時間對特定的數據庫進行實踐測試與總結。作為一個程序員,我們也許不清楚線上正式的服務器硬件配置,我們不可能像DBA那樣專業的對數據庫進行各種實踐測試與總結,但我們都應該非常了解我們SQL的業務邏輯,我們清楚SQL中訪問表及字段的數據情況,我們其實只關心我們的SQL是否能盡快返回結果。那程序員如何利用已知的知
4、識進行數據庫優化?如何能快速定位SQL性能問題并找到正確的優化方向?面對這些問題,筆者總結了一些面向程序員的基本優化法則,本文將結合實例來坦述數據庫開發的優化知識。一、數據庫訪問優化法則簡介要正確的優化SQL,我們需要快速定位能性的瓶頸點,也就是說快速找到我們SQL主要的開銷在哪里?而大多數情況性能最慢的設備會是瓶頸點,如下載時網絡速度可能會是瓶頸點,本地復制文件時硬盤可能會是瓶頸點,為什么這些一般的工作我們能快速確認瓶頸點呢,因為我們對這些慢速設備的性能數據有一些基本的認識,如網絡帶寬是2Mbps,硬盤是每分鐘7200轉等等。因此,為了快速找到SQL的性能瓶頸點,我們也需要了解我們計算機系統
5、的硬件基本性能指標,下圖展示的當前主流計算機性能指標數據。 從圖上可以看到基本上每種設備都有兩個指標:延時(響應時間):表示硬件的突發處理能力;帶寬(吞吐量):代表硬件持續處理能力。 從上圖可以看出,計算機系統硬件性能從高到代依次為:CPUCache(L1-L2-L3)內存SSD硬盤網絡硬盤由于SSD硬盤還處于快速發展階段,所以本文的內容不涉及SSD相關應用系統。根據數據庫知識,我們可以列出每種硬件主要的工作內容:CPU及內存:緩存數據訪問、比較、排序、事務檢測、SQL解析、函數或邏輯運算;網絡:結果數據傳輸、SQL請求、遠程數據庫訪問(dblink);硬盤:數據訪問、數據
6、寫入、日志記錄、大數據量排序、大表連接。 根據當前計算機硬件的基本性能指標及其在數據庫中主要操作內容,可以整理出如下圖所示的性能基本優化法則: 這個優化法則歸納為5個層次:1、 減少數據訪問(減少磁盤訪問)2、 返回更少數據(減少網絡傳輸或磁盤訪問)3、 減少交互次數(減少網絡傳輸)4、 減少服務器CPU開銷(減少CPU及內存開銷)5、 利用更多資源(增加資源) 由于每一層優化法則都是解決其對應硬件的性能問題,所以帶來的性能提升比例也不一樣。傳統數據庫系統設計是也是盡可能對低速設備提供優化方法,因此針對低
7、速設備問題的可優化手段也更多,優化成本也更低。我們任何一個SQL的性能優化都應該按這個規則由上到下來診斷問題并提出解決方案,而不應該首先想到的是增加資源解決問題。以下是每個優化法則層級對應優化效果及成本經驗參考: 優化法則 性能提升效果 優化成本 減少數據訪問 11000 低 返回更少數據 1100 低 減少交互次數 120 低 減少服務器CPU開銷 15 低 利用更多資源 10 高 接下來,我
8、們針對5種優化法則列舉常用的優化手段并結合實例分析。 二、Oracle數據庫兩個基本概念數據塊(Block)數據塊是數據庫中數據在磁盤中存儲的最小單位,也是一次IO訪問的最小單位,一個數據塊通常可以存儲多條記錄,數據塊大小是DBA在創建數據庫或表空間時指定,可指定為2K、4K、8K、16K或32K字節。下圖是一個Oracle數據庫典型的物理結構,一個數據庫可以包括多個數據文件,一個數據文件內又包含多個數據塊; ROWIDROWID是每條記錄在數據庫中的唯一標識,通過ROWID可以直接定位記錄到對應的文件號及數據塊位置。ROWID內容包括文件號、對像號、數據塊號、
9、記錄槽號,如下圖所示: 三、數據庫訪問優化法則詳解1、減少數據訪問1.1、創建并使用正確的索引數據庫索引的原理非常簡單,但在復雜的表中真正能正確使用索引的人很少,即使是專業的DBA也不一定能完全做到最優。索引會大大增加表記錄的DML(INSERT,UPDATE,DELETE)開銷,正確的索引可以讓性能提升100,1000倍以上,不合理的索引也可能會讓性能下降100倍,因此在一個表中創建什么樣的索引需要平衡各種業務需求。索引常見問題:索引有哪些種類?常見的索引有B-TREE索引、位圖索引、全文索引,位圖索引一般用于數據倉庫應用,全文索引由于使用較少,這里不深入介紹。B-TREE索引包括
10、很多擴展類型,如組合索引、反向索引、函數索引等等,以下是B-TREE索引的簡單介紹:B-TREE索引也稱為平衡樹索引(Balance Tree),它是一種按字段排好序的樹形目錄結構,主要用于提升查詢性能和唯一約束支持。B-TREE索引的內容包括根節點、分支節點、葉子節點。葉子節點內容:索引字段內容+表記錄ROWID根節點,分支節點內容:當一個數據塊中不能放下所有索引字段數據時,就會形成樹形的根節點或分支節點,根節點與分支節點保存了索引樹的順序及各層級間的引用關系。 一個普通的BTREE索引結構示意圖
11、如下所示: 如果我們把一個表的內容認為是一本字典,那索引就相當于字典的目錄,如下圖所示: 圖中是一個字典按部首+筆劃數的目錄,相當于給字典建了一個按部首+筆劃的組合索引。一個表中可以建多個索引,就如一本字典可以建多個目錄一樣(按拼音、筆劃、部首等等)。一個索引也可以由多個字段組成,稱為組合索引,如上圖就是一個按部首+筆劃的組合目錄。SQL什么條件會使用索引?當字段上建有索引時,通常以下情況會使用索引:INDEX_COLUMN = ?INDEX_COLUMN > ?INDEX_COLUMN >= ?INDEX_COL
12、UMN < ?INDEX_COLUMN <= ?INDEX_COLUMN between ? and ?INDEX_COLUMN in (?,?,.,?)INDEX_COLUMN like ?|'%'(后導模糊查詢)T1. INDEX_COLUMN=T2. COLUMN1(兩個表通過索引字段關聯) SQL什么條件不會使用索引? 查詢條件 不能使用索引原因 INDEX_COLUMN <> ?INDEX_COLUMN not in (?,?,.,?) 不等于操作不能使用索引 function(IND
13、EX_COLUMN) = ?INDEX_COLUMN + 1 = ?INDEX_COLUMN | 'a' = ? 經過普通運算或函數運算后的索引字段不能使用索引 INDEX_COLUMN like '%'|?INDEX_COLUMN like '%'|?|'%' 含前導模糊查詢的Like語法不能使用索引 INDEX_COLUMN is null B-TREE索引里不保存字段為NULL值記錄,因此IS NULL不能使用索引 NUMBER_INDEX_COLUMN='
14、12345'CHAR_INDEX_COLUMN=12345 Oracle在做數值比較時需要將兩邊的數據轉換成同一種數據類型,如果兩邊數據類型不同時會對字段值隱式轉換,相當于加了一層函數處理,所以不能使用索引。 a.INDEX_COLUMN=a.COLUMN_1 給索引查詢的值應是已知數據,不能是未知字段值。 注:經過函數運算字段的字段要使用可以使用函數索引,這種需求建議與DBA溝通。有時候我們會使用多個字段的組合索引,如果查詢條件中第一個字段不能使用索引,那整個查詢也不能使用索引如:我們company表建了一個id+name的組合索引,以下SQL
15、是不能使用索引的Select * from company where name=?Oracle9i后引入了一種index skip scan的索引方式來解決類似的問題,但是通過index skip scan提高性能的條件比較特殊,使用不好反而性能會更差。 我們一般在什么字段上建索引?這是一個非常復雜的話題,需要對業務及數據充分分析后再能得出結果。主鍵及外鍵通常都要有索引,其它需要建索引的字段應滿足以下條件:1、字段出現在查詢條件中,并且查詢條件可以使用索引;2、語句執行頻率高,一天會有幾千次以上;3、通過字段條件可篩選的記錄集很小,那數據篩選比例是多少才適合?這個沒有固
16、定值,需要根據表數據量來評估,以下是經驗公式,可用于快速評估:小表(記錄數小于10000行的表):篩選比例<10%;大表:(篩選返回記錄數)<(表總記錄數*單條記錄長度)/10000/16 單條記錄長度字段平均內容長度之和+字段數*2 以下是一些字段是否需要建B-TREE索引的經驗分類: 字段類型 常見字段名 需要建索引的字段 主鍵 ID,PK 外鍵 PRODUCT_ID,COMPANY_ID,MEMBER_ID,ORD
17、ER_ID,TRADE_ID,PAY_ID 有對像或身份標識意義字段 HASH_CODE,USERNAME,IDCARD_NO,EMAIL,TEL_NO,IM_NO 索引慎用字段,需要進行數據分布及使用場景詳細評估 日期 GMT_CREATE,GMT_MODIFIED 年月 YEAR,MONTH 狀態標志 PRODUCT_STATUS,ORDER_STATUS,IS_DELETE,VIP_FLAG 類型 ORDER_TYPE,IMAGE_TYPE,GENDER,CURRENCY_TYP
18、E 區域 COUNTRY,PROVINCE,CITY 操作人員 CREATOR,AUDITOR 數值 LEVEL,AMOUNT,SCORE 長字符 ADDRESS,COMPANY_NAME,SUMMARY,SUBJECT 不適合建索引的字段 描述備注 DESCRIPTION,REMARK,MEMO,DETAIL 大字段 FILE_CONTENT,EMAIL_CONTENT 如何知道SQL是否使用了正確的索引?簡單SQL可以根據索引使用語法規則判
19、斷,復雜的SQL不好辦,判斷SQL的響應時間是一種策略,但是這會受到數據量、主機負載及緩存等因素的影響,有時數據全在緩存里,可能全表訪問的時間比索引訪問時間還少。要準確知道索引是否正確使用,需要到數據庫中查看SQL真實的執行計劃,這個話題比較復雜,詳見SQL執行計劃專題介紹。 索引對DML(INSERT,UPDATE,DELETE)附加的開銷有多少?這個沒有固定的比例,與每個表記錄的大小及索引字段大小密切相關,以下是一個普通表測試數據,僅供參考:索引對于Insert性能降低56%索引對于Update性能降低47%索引對于Delete性能降低29%因此對于寫IO壓力比較大的系統,表的索
20、引需要仔細評估必要性,另外索引也會占用一定的存儲空間。 1.2、只通過索引訪問數據有些時候,我們只是訪問表中的幾個字段,并且字段內容較少,我們可以為這幾個字段單獨建立一個組合索引,這樣就可以直接只通過訪問索引就能得到數據,一般索引占用的磁盤空間比表小很多,所以這種方式可以大大減少磁盤IO開銷。如:select id,name from company where type='2'如果這個SQL經常使用,我們可以在type,id,name上創建組合索引create index my_comb_index on company(type,id,name);有了這個組合索引
21、后,SQL就可以直接通過my_comb_index索引返回數據,不需要訪問company表。還是拿字典舉例:有一個需求,需要查詢一本漢語字典中所有漢字的個數,如果我們的字典沒有目錄索引,那我們只能從字典內容里一個一個字計數,最后返回結果。如果我們有一個拼音目錄,那就可以只訪問拼音目錄的漢字進行計數。如果一本字典有1000頁,拼音目錄有20頁,那我們的數據訪問成本相當于全表訪問的50分之一。切記,性能優化是無止境的,當性能可以滿足需求時即可,不要過度優化。在實際數據庫中我們不可能把每個SQL請求的字段都建在索引里,所以這種只通過索引訪問數據的方法一般只用于核心應用,也就是那種對核心表訪問量最高且
22、查詢字段數據量很少的查詢。1.3、優化SQL執行計劃SQL執行計劃是關系型數據庫最核心的技術之一,它表示SQL執行時的數據訪問算法。由于業務需求越來越復雜,表數據量也越來越大,程序員越來越懶惰,SQL也需要支持非常復雜的業務邏輯,但SQL的性能還需要提高,因此,優秀的關系型數據庫除了需要支持復雜的SQL語法及更多函數外,還需要有一套優秀的算法庫來提高SQL性能。目前ORACLE有SQL執行計劃的算法約300種,而且一直在增加,所以SQL執行計劃是一個非常復雜的課題,一個普通DBA能掌握50種就很不錯了,就算是資深DBA也不可能把每個執行計劃的算法描述清楚。雖然有這么多種算法,但并不表示我們無法
23、優化執行計劃,因為我們常用的SQL執行計劃算法也就十幾個,如果一個程序員能把這十幾個算法搞清楚,那就掌握了80%的SQL執行計劃調優知識。由于篇幅的原因,SQL執行計劃需要專題介紹,在這里就不多說了。 2、返回更少的數據2.1、數據分頁處理一般數據分頁方式有:、客戶端(應用程序或瀏覽器)分頁將數據從應用服務器全部下載到本地應用程序或瀏覽器,在應用程序或瀏覽器內部通過本地代碼進行分頁處理優點:編碼簡單,減少客戶端與應用服務器網絡交互次數缺點:首次交互時間長,占用客戶端內存適應場景:客戶端與應用服務器網絡延時較大,但要求后續操作流暢,如手機GPRS,超遠程訪問(跨國)等等。、應用服務器分
24、頁將數據從數據庫服務器全部下載到應用服務器,在應用服務器內部再進行數據篩選。以下是一個應用服務器端Java程序分頁的示例:List list=executeQuery(“select * from employee order by id”);Int count= list.size();List subList= list.subList(10, 20); 優點:編碼簡單,只需要一次SQL交互,總數據與分頁數據差不多時性能較好。缺點:總數據量較多時性能較差。適應場景:數據庫系統不支持分頁處理,數據量較小并且可控。 、數據庫SQL分頁采用數據庫SQL分頁需要兩次SQL完成一
25、個SQL計算總數量一個SQL返回分頁后的數據優點:性能好缺點:編碼復雜,各種數據庫語法不同,需要兩次SQL交互。 oracle數據庫一般采用rownum來進行分頁,常用分頁語法有如下兩種: 直接通過rownum分頁:select * from ( select a.*,rownum rn from
26、160; (select * from product a where company_id=? order by status) a where rownum<=20) where rn>10;數據訪問開銷=索引IO+索引全部記錄結果對應的表數據IO 采用rowid分頁語法優化原理是通過純索引找出分頁記錄的ROWID,再通過ROWID回表返回數據,要求內層查詢和排序字段全在索引里。create index myindex on product(comp
27、any_id,status); select b.* from ( select * from ( select a.*,rownum rn from
28、60; (select rowid rid,status from product a where company_id=? order by status) a where rownum&l
29、t;=20) where rn>10) a, product bwhere a.rid=b.rowid;數據訪問開銷=索引IO+索引分頁結果對應的表數據IO 實例:一個公司產品有1000條記錄,要分頁取其中20個產品,假設訪問公司索引需要50個IO,2條記錄需要1個表數據IO。那么按第一種ROWNUM分頁寫法,需要550(50+1000/2)個IO,按第二種ROWID分頁寫法,只需要60個IO(50+20/2); 2.2、只返回需要的字段通過去除不必要的返回字段可以提高性
30、能,例:調整前:select * from product where company_id=?;調整后:select id,name from product where company_id=?; 優點:1、減少數據在網絡上傳輸開銷2、減少服務器數據處理開銷3、減少客戶端內存占用4、字段變更時提前發現問題,減少程序BUG5、如果訪問的所有字段剛好在一個索引里面,則可以使用純索引訪問提高性能。缺點:增加編碼工作量由于會增加一些編碼工作量,所以一般需求通過開發規范來要求程序員這么做,否則等項目上線后再整改工作量更大。如果你的查詢表中有大字段或內容較多的字段,如備注信息、文件內容等等,
31、那在查詢表時一定要注意這方面的問題,否則可能會帶來嚴重的性能問題。如果表經常要查詢并且請求大內容字段的概率很低,我們可以采用分表處理,將一個大表分拆成兩個一對一的關系表,將不常用的大內容字段放在一張單獨的表中。如一張存儲上傳文件的表:T_FILE(ID,FILE_NAME,FILE_SIZE,FILE_TYPE,FILE_CONTENT)我們可以分拆成兩張一對一的關系表:T_FILE(ID,FILE_NAME,FILE_SIZE,FILE_TYPE)T_FILECONTENT(ID, FILE_CONTENT)
32、 通過這種分拆,可以大大提少T_FILE表的單條記錄及總大小,這樣在查詢T_FILE時性能會更好,當需要查詢FILE_CONTENT字段內容時再訪問T_FILECONTENT表。 3、減少交互次數3.1、batch DML數據庫訪問框架一般都提供了批量提交的接口,jdbc支持batch的提交處理方法,當你一次性要往一個表中插入1000萬條數據時,如果采用普通的executeUpdate處理,那么和服務器交互次數為1000萬次,按每秒鐘可以向數據庫服務器提交10000次估算,要完成所有工作需要1000秒。如果采用批量提交模式,1000條提交一次,那么和服務器交互次數為1萬次
33、,交互次數大大減少。采用batch操作一般不會減少很多數據庫服務器的物理IO,但是會大大減少客戶端與服務端的交互次數,從而減少了多次發起的網絡延時開銷,同時也會降低數據庫的CPU開銷。 假設要向一個普通表插入1000萬數據,每條記錄大小為1K字節,表上沒有任何索引,客戶端與數據庫服務器網絡是100Mbps,以下是根據現在一般計算機能力估算的各種batch大小性能對比值: 單位:ms No batch Batch=10 Batch=100 Batch=1000 Batch=10000 服務器事務處理時間 0
34、.1 0.1 0.1 0.1 0.1 服務器IO處理時間 0.02 0.2 2 20 200 網絡交互發起時間 0.1 0.1 0.1 0.1 0.1 網絡數據傳輸時間 0.01 0.1 1 10 100 小計 0.23 0.5 3.2 30.2 300.2 平均每條記錄處理時間 0.23
35、;0.05 0.032 0.0302 0.03002 從上可以看出,Insert操作加大Batch可以對性能提高近8倍性能,一般根據主鍵的Update或Delete操作也可能提高2-3倍性能,但不如Insert明顯,因為Update及Delete操作可能有比較大的開銷在物理IO訪問。以上僅是理論計算值,實際情況需要根據具體環境測量。 3.2、In List很多時候我們需要按一些ID查詢數據庫記錄,我們可以采用一個ID一個請求發給數據庫,如下所示:for :var in ids do begin select * from
36、 mytable where id=:var;end; 我們也可以做一個小的優化, 如下所示,用ID INLIST的這種方式寫SQL:select * from mytable where id in(:id1,id2,.,idn); 通過這樣處理可以大大減少SQL請求的數量,從而提高性能。那如果有10000個ID,那是不是全部放在一條SQL里處理呢?答案肯定是否定的。首先大部份數據庫都會有SQL長度和IN里個數的限制,如ORACLE的IN里就不允許超過1000個值。另外當前數據庫一般都是采用基于成本的優化規則,當IN數量達到一定值時有可能改變SQL執行計劃,從索引訪問變成
37、全表訪問,這將使性能急劇變化。隨著SQL中IN的里面的值個數增加,SQL的執行計劃會更復雜,占用的內存將會變大,這將會增加服務器CPU及內存成本。評估在IN里面一次放多少個值還需要考慮應用服務器本地內存的開銷,有并發訪問時要計算本地數據使用周期內的并發上限,否則可能會導致內存溢出。綜合考慮,一般IN里面的值個數超過20個以后性能基本沒什么太大變化,也特別說明不要超過100,超過后可能會引起執行計劃的不穩定性及增加數據庫CPU及內存成本,這個需要專業DBA評估。 3.3、設置Fetch Size當我們采用select從數據庫查詢數據時,數據默認并不是一條一條返回給客戶端的,也不是一次全
38、部返回客戶端的,而是根據客戶端fetch_size參數處理,每次只返回fetch_size條記錄,當客戶端游標遍歷到尾部時再從服務端取數據,直到最后全部傳送完成。所以如果我們要從服務端一次取大量數據時,可以加大fetch_size,這樣可以減少結果數據傳輸的交互次數及服務器數據準備時間,提高性能。 以下是jdbc測試的代碼,采用本地數據庫,表緩存在數據庫CACHE中,因此沒有網絡連接及磁盤IO開銷,客戶端只遍歷游標,不做任何處理,這樣更能體現fetch參數的影響:String vsql ="select * from t_employee"PreparedStat
39、ement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);pstmt.setFetchSize(1000);ResultSet rs = pstmt.executeQuery(vsql);int cnt = rs.getMetaData().getColumnCount();Object o;while (rs.next() for (int i = 1; i <= cnt; i+)
40、0; o = rs.getObject(i); 測試示例中的employee表有100000條記錄,每條記錄平均長度135字節 以下是測試結果,對每種fetchsize測試5次再取平均值:fetchsize elapse_time(s) 1 20.516 2 11.34 4 6.894 8 4.65 16 3.584 32 2.865 64 2.656
41、 128 2.44 256 2.765 512 3.075 1024 2.862 2048 2.722 4096 2.681 8192 2.715 Oracle jdbc fetchsize默認值為10,由上測試可以看出fetchsize對性能影響還是比較大的,但是當fetchsize大于100時就基本上沒有影響了。fetchsize并不會存在一個最優的固定值,因為整體性能與記錄集大小及硬件平臺有關。根據測試結
42、果建議當一次性要取大量數據時這個值設置為100左右,不要小于40。注意,fetchsize不能設置太大,如果一次取出的數據大于JVM的內存會導致內存溢出,所以建議不要超過1000,太大了也沒什么性能提高,反而可能會增加內存溢出的危險。注:圖中fetchsize在128以后會有一些小的波動,這并不是測試誤差,而是由于resultset填充到具體對像時間不同的原因,由于resultset已經到本地內存里了,所以估計是由于CPU的L1,L2 Cache命中率變化造成,由于變化不大,所以筆者也未深入分析原因。 iBatis的SqlMapping配置文件可以對每個SQL語句指定fetchsiz
43、e大小,如下所示: <select id="getAllProduct" resultMap="HashMap" fetchSize="1000">select * from employee</select> 3.4、使用存儲過程大型數據庫一般都支持存儲過程,合理的利用存儲過程也可以提高系統性能。如你有一個業務需要將A表的數據做一些加工然后更新到B表中,但是又不可能一條SQL完成,這時你需要如下3步操作:a:將A表數據全部取出到客戶端;b:計算出要更新的數據;c:將計算結果更新到B表。
44、160;如果采用存儲過程你可以將整個業務邏輯封裝在存儲過程里,然后在客戶端直接調用存儲過程處理,這樣可以減少網絡交互的成本。當然,存儲過程也并不是十全十美,存儲過程有以下缺點:a、不可移植性,每種數據庫的內部編程語法都不太相同,當你的系統需要兼容多種數據庫時最好不要用存儲過程。b、學習成本高,DBA一般都擅長寫存儲過程,但并不是每個程序員都能寫好存儲過程,除非你的團隊有較多的開發人員熟悉寫存儲過程,否則后期系統維護會產生問題。c、業務邏輯多處存在,采用存儲過程后也就意味著你的系統有一些業務邏輯不是在應用程序里處理,這種架構會增加一些系統維護和調試成本。d、存儲過程和常用應用程序語言不一樣,它支
45、持的函數及語法有可能不能滿足需求,有些邏輯就只能通過應用程序處理。e、如果存儲過程中有復雜運算的話,會增加一些數據庫服務端的處理成本,對于集中式數據庫可能會導致系統可擴展性問題。f、為了提高性能,數據庫會把存儲過程代碼編譯成中間運行代碼(類似于java的class文件),所以更像靜態語言。當存儲過程引用的對像(表、視圖等等)結構改變后,存儲過程需要重新編譯才能生效,在24*7高并發應用場景,一般都是在線變更結構的,所以在變更的瞬間要同時編譯存儲過程,這可能會導致數據庫瞬間壓力上升引起故障(Oracle數據庫就存在這樣的問題)。 個人觀點:普通業務邏輯盡量不要使用存儲過程,定時性的ET
46、L任務或報表統計函數可以根據團隊資源情況采用存儲過程處理。 3.5、優化業務邏輯要通過優化業務邏輯來提高性能是比較困難的,這需要程序員對所訪問的數據及業務流程非常清楚。舉一個案例:某移動公司推出優惠套參,活動對像為VIP會員并且2010年1,2,3月平均話費20元以上的客戶。那我們的檢測邏輯為:if avg_money>20 and vip_flag=true thenbegin 執行套參();end; 如果我們修改業務邏輯為:if avg_money>20 thenbegin if vip_flag=true then be
47、gin 執行套參(); end;end;通過這樣可以減少一些判斷vip_flag的開銷,平均話費20元以下的用戶就不需要再檢測是否VIP了。 如果程序員分析業務,VIP會員比例為1%,平均話費20元以上的用戶比例為90%,那我們改成如下:if vip_flag=true thenbegin if avg_money>20 then begin 執行套參(); end;end;這樣就只有1%的VIP會員才會做檢測平均話費,最終大大減少了SQL的交互次數。
48、0;以上只是一個簡單的示例,實際的業務總是比這復雜得多,所以一般只是高級程序員更容易做出優化的邏輯,但是我們需要有這樣一種成本優化的意識。 3.6、使用ResultSet游標處理記錄現在大部分Java框架都是通過jdbc從數據庫取出數據,然后裝載到一個list里再處理,list里可能是業務Object,也可能是hashmap。由于JVM內存一般都小于4G,所以不可能一次通過sql把大量數據裝載到list里。為了完成功能,很多程序員喜歡采用分頁的方法處理,如一次從數據庫取1000條記錄,通過多次循環搞定,保證不會引起JVM Out of memory問題。 以下是實現此功能的
49、代碼示例,t_employee表有10萬條記錄,設置分頁大小為1000: d1 = Calendar.getInstance().getTime();vsql = "select count(*) cnt from t_employee"pstmt = conn.prepareStatement(vsql);ResultSet rs = pstmt.executeQuery();Integer cnt = 0;while (rs.next() cnt = rs.get
50、Int("cnt");Integer lastid=0;Integer pagesize=1000;System.out.println("cnt:" + cnt);String vsql = "select count(*) cnt from t_employee"PreparedStatement pstmt = conn.prepareStatement(vsql);ResultSet rs = pstmt.executeQuery();Integer cnt = 0;while (rs.next() &
51、#160; cnt = rs.getInt("cnt");Integer lastid = 0;Integer pagesize = 1000;System.out.println("cnt:" + cnt);for (int i = 0; i <= cnt / pagesize; i+) vsql = "select * from (select * from t_employee
52、 where id>? order by id) where rownum<=?" pstmt = conn.prepareStatement(vsql); pstmt.setFetchSize(1000); pstmt.setInt(1, lastid);
53、0; pstmt.setInt(2, pagesize); rs = pstmt.executeQuery(); int col_cnt = rs.getMetaData().getColumnCount(); Object o;
54、; while (rs.next() for (int j = 1; j <= col_cnt; j+)
55、60; o = rs.getObject(j);
56、; lastid = rs.getInt("id"); rs.close(); pstmt.close(); 以上代碼實際執行時間為6.516秒 很多持久層框架為了盡量讓程序員使用方便,封裝了jdbc通過statement執行數據返回到resultset的細節,導致程序
57、員會想采用分頁的方式處理問題。實際上如果我們采用jdbc原始的resultset游標處理記錄,在resultset循環讀取的過程中處理記錄,這樣就可以一次從數據庫取出所有記錄。顯著提高性能。這里需要注意的是,采用resultset游標處理記錄時,應該將游標的打開方式設置為FORWARD_READONLY模式(ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY),否則會把結果緩存在JVM里,造成JVM Out of memory問題。 代碼示例: String vsql ="select * from t_e
58、mployee"PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);pstmt.setFetchSize(100);ResultSet rs = pstmt.executeQuery(vsql);int col_cnt = rs.getMetaData().getColumnCount();Object o;while (rs.next()
59、0; for (int j = 1; j <= col_cnt; j+) o = rs.getObject(j); 調整后的代碼實際執行時間為3.156秒 從測試結果可以看出性能提高了1倍多,如果采用分頁模式數據庫每次還需發生磁盤IO的話那性能可以提高更多。
60、iBatis等持久層框架考慮到會有這種需求,所以也有相應的解決方案,在iBatis里我們不能采用queryForList的方法,而應用該采用queryWithRowHandler加回調事件的方式處理,如下所示: MyRowHandler myrh=new MyRowHandler();sqlmap.queryWithRowHandler("getAllEmployee", myrh); class MyRowHandler implements RowHandler public void handleRow(Obj
61、ect o) /todo something iBatis的queryWithRowHandler很好的封裝了resultset遍歷的事件處理,效果及性能與resultset遍歷一樣,也不會產生JVM內存溢出。 4、減少數據庫服務器CPU運算4.1、使用綁定變量綁定變量是指SQL中對變化的值采用變量參數的形式提交,而不是在SQL中直接拼寫對應的值。非綁定變量寫法:Select * from employee where id=1234567綁定變量寫法:Selec
62、t * from employee where id=?Preparestatement.setInt(1,1234567) Java中Preparestatement就是為處理綁定變量提供的對像,綁定變量有以下優點:1、防止SQL注入2、提高SQL可讀性3、提高SQL解析性能,不使用綁定變更我們一般稱為硬解析,使用綁定變量我們稱為軟解析。第1和第2點很好理解,做編碼的人應該都清楚,這里不詳細說明。關于第3點,到底能提高多少性能呢,下面舉一個例子說明: 假設有這個這樣的一個數據庫主機:2個4核CPU 100塊磁盤,每個磁盤支持IOPS為160業務應用的SQL如下
63、:select * from table where pk=?這個SQL平均4個IO(3個索引IO+1個數據IO)IO緩存命中率75%(索引全在內存中,數據需要訪問磁盤)SQL硬解析CPU消耗:1ms (常用經驗值)SQL軟解析CPU消耗:0.02ms(常用經驗值) 假設CPU每核性能是線性增長,訪問內存Cache中的IO時間忽略,要求計算系統對如上應用采用硬解析與采用軟解析支持的每秒最大并發數: 是否使用綁定變量 CPU支持最大并發數 磁盤IO支持最大并發數 不使用 2*4*1000=8000 100*160=
64、16000 使用 2*4*1000/0.02=400000 100*160=16000 從以上計算可以看出,不使用綁定變量的系統當并發達到8000時會在CPU上產生瓶頸,當使用綁定變量的系統當并行達到16000時會在磁盤IO上產生瓶頸。所以如果你的系統CPU有瓶頸時請先檢查是否存在大量的硬解析操作。 使用綁定變量為何會提高SQL解析性能,這個需要從數據庫SQL執行原理說明,一條SQL在Oracle數據庫中的執行過程如下圖所示: 當一條SQL發送給數據庫服務器后,系統首先會將SQL字符串進行hash運
65、算,得到hash值后再從服務器內存里的SQL緩存區中進行檢索,如果有相同的SQL字符,并且確認是同一邏輯的SQL語句,則從共享池緩存中取出SQL對應的執行計劃,根據執行計劃讀取數據并返回結果給客戶端。如果在共享池中未發現相同的SQL則根據SQL邏輯生成一條新的執行計劃并保存在SQL緩存區中,然后根據執行計劃讀取數據并返回結果給客戶端。為了更快的檢索SQL是否在緩存區中,首先進行的是SQL字符串hash值對比,如果未找到則認為沒有緩存,如果存在再進行下一步的準確對比,所以要命中SQL緩存區應保證SQL字符是完全一致,中間有大小寫或空格都會認為是不同的SQL。如果我們不采用綁定變量,采用字符串拼接
66、的模式生成SQL,那么每條SQL都會產生執行計劃,這樣會導致共享池耗盡,緩存命中率也很低。 一些不使用綁定變量的場景:a、數據倉庫應用,這種應用一般并發不高,但是每個SQL執行時間很長,SQL解析的時間相比SQL執行時間比較小,綁定變量對性能提高不明顯。數據倉庫一般都是內部分析應用,所以也不太會發生SQL注入的安全問題。b、數據分布不均勻的特殊邏輯,如產品表,記錄有1億,有一產品狀態字段,上面建有索引,有審核中,審核通過,審核未通過3種狀態,其中審核通過9500萬,審核中1萬,審核不通過499萬。要做這樣一個查詢:select count(*) from product where status=?采用綁定變量的話,那么只會有一個執行計劃,如果走索引訪問,那么對于審核中查詢很快,對審核通過和審核不通過會很
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年信息技術教學考試試卷及答案
- 2025年國際貿易實務職業考題及答案
- 2025年可持續發展與環境教育考試試題及答案
- 萬達安全考試題庫及答案
- 一級語文通知試題及答案
- 裝修拆墻施工合同協議書
- 廣東省東莞市翰林實驗學校2024-2025學年高一下學期期中考試數學試題(解析)
- 傳染病預防與健康管理宣講
- 患者的護理管理
- 城市應急供電系統升級補充協議
- 2025年4月自考00242民法學試題及答案含評分標準
- 2025年氫化丁晴橡膠發展現狀及市場前景趨勢分析
- DB65-T 4623-2022 分散式風電接入電力系統管理規范
- 退休終止勞動合同協議書
- 2024譯林版七年級英語下冊期中復習:Unit1-Unit4詞組講義
- 護士助教面試題及答案
- 第18課《井岡翠竹》課件-2024-2025學年統編版語文七年級下冊
- 第16課《有為有不為》公開課一等獎創新教學設計
- 【MOOC】《思想道德與法治》(東南大學)章節中國大學慕課答案
- 【MOOC】以案說法-中南財經政法大學 中國大學慕課MOOC答案
- 卜算子-送鮑浩然之浙東課件
評論
0/150
提交評論