




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Chapter 12Risk Management and Financial Institutions 2e, Chapter 12, Copyright John C. Hull 20091Market Risk VaR: Historical Simulation Approach12.1 The MethodologylHistorical simulation involves using past data as a guide to what will happen in the future.lSuppose that we want to calculate VaR for
2、a portfolio using a one-day time horizon, a 99% confidence level, and 501 days of data.lThe time horizon and confidence level are those typically used for a market risk VaR calculation; 501 is a popular choice for the number of days of data used because it leads to 500 scenarios being created.The st
3、eps of historical simulation approachlThe first step is to identify the market variables affecting the portfolio, these will typically be exchange rates, equity prices, interest rates and so on.lData are then collected on movements in these market variables over the most recent 501 days. this provid
4、ed 500 alternative scenarios for what can happen between today and tomorrow.lFor each scenario, the dollar change in the value of the portfolio between today and tomorrow is calculated. This defines a probability distribution for daily loss( gains are negative losses) in the value of our portfolio.l
5、The 99th percentile of the distribution can be estimated as the fifth-worst loss( there are alternatives here, a case can be made for using the fifth-worst loss, the sixth-worst loss, or an average of the two).lThe estimate of VaR is the loss when we are at this 99th percentile point.Algebraically e
6、xpression of the approachlDefine vi as the value of a market variable on day i and suppose that today is day n. the ith scenario in the historical simulation approach assumes that the value of the market variable tomorrow will be: Value under ith scenario=vn*vi/vi-1 (12.1)Illustration lTo illustrate
7、 the calculations underlying the approach, suppose that an investor owns, on September 25, 2008, a portfolio worth $10 million consisting of investments in four stock indices: the Dow Jones Industrial Average(DJIA) in the US, the FTSE 100 in the UK, the CAC 40 in France, and the Nikkei 225 in Japan.
8、 對表對表12.312.3的相關說明的相關說明(市場變量在(市場變量在2008年年9月月26日對于選定情形的取值)日對于選定情形的取值)l情形1假定9月25日至26日的市場價格百分比變化等同于2006年8月7日至8月8日之間市場價格的百分比變化。情形1是市場變量2008年9月26日的一種取值形式。l情形2假定9月25日至26日的市場價格百分比變化等同于2006年8月8日至8月9日之間市場價格的百分比變化,情形2也是市場變量在2008年9月26日的一種取值形式。l以此類推,情形i假定9月25日至9月26日的市場價格百分比變化等同于第i-1天與第i天的百分比變化(1i500),情形i定義了市場變量
9、在2008年9月26日的一種取值形式。情形情形1 1下組合資產價值的計算下組合資產價值的計算情形情形1 1下組合的收益為下組合的收益為21.50221.502千美元,即千美元,即-21.502-21.502千美元的損失。千美元的損失。結論:結論:1 1天展望期天展望期99%99%的置信水平下,的置信水平下,VaRVaR為為247 571247 571美元。美元。l因為1天展望期99%置信水平下的VaR為247 571美元,所以10天展望期99%置信水平下的VaR等于: 10*247571 782889美元12.2 Accuracy (page 184-185) Suppose that x i
10、s the qth quantile of the loss distribution when it is estimated from n observations. The standard error of x iswhere f(x) is an estimate of the probability density of the loss at the qth quantile calculated by assuming a probability distribution for the lossnqqxf)1 ()(1Risk Management and Financial
11、 Institutions 2e, Chapter 12, Copyright John C. Hull 200915Example 12.1 (page 184)lWe estimate the 0.01-quantile from 500 observations as $25 million lWe estimate f(x) by approximating the actual empirical distribution with a normal distribution mean zero and standard deviation $10 millionlThe 0.01 quantile of the approximating distribution is NORMINV(0.01,0,10) = 23.26 and the value of f(x) is NORMDIST(23.26,0,10,FALSE)=0.0027lThe estimate of the standard error is therefore Risk Management and Financial Institutions 2e, Chapter 12, Copyrigh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化糞池清掏服務方案
- 航空航天復合材料 課件知識點4 CC復合材料
- 潛水考試試題及答案
- javaservrlt面試題及答案
- QA藥品生產現場質量管理培訓
- 催化分餾培訓
- 《瀝青混合料》課件
- 儲備主管培訓課件
- 幼兒培訓教育
- 國慶節繪畫課件
- 期末專題復習專題04 修改病句(專項訓練)-2023-2024學年四年級下冊語文(統編版)
- 16J916-1住宅排氣道一
- 檢驗科實驗室生物安全
- 數學教學與技能訓練智慧樹知到期末考試答案章節答案2024年濟寧學院
- 國開(河南)專科《管理心理學》作業練習1-3+終考試題及答案
- 井口工具的使用及維護保養方法
- JJG 971-2019液位計檢定規程
- 水中嗜肺軍團菌檢驗方法 酶底物定量法
- 人教版物理八年級下冊知識點梳理復習課件
- 血透護理記錄書寫規范
- 無線充電技術的普及
評論
0/150
提交評論