




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、抽象函數專題幾類抽象函數模型抽象函數模型適用模型的初等函數f (xy)f (x)f (y)正比例函數f (x)kx(k0)f (xy)f (x)f (y)或f ()冪函數f (x)xnf (xy)f (x)f (y)或f (xy)指數函數f (x)ax(a>0且a1)f (xy)f (x)f (y)或f ()f (x)f (y)對數函數f (x)logax(a>0且a1)f (xT)f (x)正余弦函數f (x)sinx,f (x)cosxf (xy)正切函數f (x)tanx練習題1定義域為(0,¥)的函數f (x)滿足f (xy)f (x)f (y),若f (4)2,
2、則f ()的值為_答案:解:因為f (4)f (2)f (2),f (2)f ()f (),所以f (4)4 f (),f ()2函數f (x)滿足f (xy2)f (x)2f (y)2且f (1)0,則f (2018)的值為_答案:1009解:f (0)0,f (1),f (x1)f (x),f (2018)f (1)2017×10093(1)函數f (x)滿足f (xy)f (x)f (y)x y1,若f (1)1,則f (8)A1B1C19D43答案:D解:因為f (1)1,y1代入f (xy)f (x)f (y)x y1,得f (x1)f (x)x 2,因此:f (2)f (
3、1)3f (3)f (2)4f (8) f (7)9累加,得f (8)43(2)函數f (x)滿足f (xy)f (x)f (y)xy1,若f (1)1,則f (8)A1B1C19D43答案:C 解:因為f (1)1,y1代入f (xy)f (x)f (y)xy1,得f (x1)f (x)x 2,因此:f (1)f (0)2f (0)f (1)1f (1)f (2)0f (2)f (3)1f (3)f (4)2f (4)f (5)3f (5)f (6)4f (6)f (7)5f (7)f (8)6累加,得f (8)19另外:f (xx)f (x)f (x)x 21f (0)f (x)f (x)
4、x 21f (x)f (x)x 224定義在R上的函數f (x)滿足f (x1x2)f (x1)f (x2)1,則下列說法正確的是Af (x)為奇函數Bf (x)為偶函數Cf (x)1為奇函數Df (x)1為偶函數答案:C 解:x1x20代入f (x1x2)f (x1)f (x2)1,得f (0)1x1x,x2x 代入f (x1x2)f (x1)f (x2)1,得f (x)f (x)2,f (x)圖象關于點(0,1)對稱,所以f (x)1為奇函數5設f (x)是定義在(0,)上的單調增函數,滿足f (xy)f (x)f (y),f (3)1,當f (x)f (x8)2時x的取值范圍是A(8,)
5、 B(8,9 C8,9 D(0,8)答案:B解:211f (3)f (3)f (9),由f (x)f (x8)2,可得fx(x8)f (9),因為f (x) 是定義在(0,)上的增函數,所以有解得8<x9.6定義在0,1上的函數f (x)滿足f (0)0,f (x)f (1x)2,f () f (x),當0 x1< x21時,f (x1)f (x2),則f ()的值為 答案: 7(1)已知函數f (x)滿足2xf (x)3f (x)x10,求f (x)的表達式解:因為2xf (x)3f (x)x10,所以2xf (x)3f (x)x10×2x得4x2f (x)6 x f
6、(x)2 x22 x 0;×3得6xf (x)9f (x)3x30相減得4x2f (x)9f (x)2 x22 x3x30,所以f (x)(2)設函數f (x)滿足f (x)2f ()x(x0),求證:|f (x)|證明:因為f (x)2f ()x ,所以f ()2f (x) ×2得2f ()4f (x)得f (x), |f (x)|8(12分)定義在R上的單調函數f (x)滿足f (xy)f (x)f (y),設f (3)log23(1)判斷函數的奇偶性;(2)若f (k3x)f (3x9x4)<0,求實數k的取值范圍解:(1)取xy0代入f (x)f (y)f (
7、xy),得f (0)0取yx代入f (x)f (x)f (0),得f (x)f (x)所以f (x)為奇函數(2)奇函數,所以, 是定義在上的單調函數,所以函數在上的單調遞增函數,奇函數,不等式等價于,因此,即,因為,當取等號,所以實數的取值范圍是9(12分)已知定義在R上的函數f (x)滿足f (x)f (y)f (xy),當>0時,f (x)<0,且f (1)(1)判斷f (x)為奇偶性;(2)求證:f (x)在R上是減函數; (3)求f (x)在3,6上的最大值與最小值解:(1)取xy0代入f (x)f (y)f (xy),得f (0)0取yx代入f (x)f (x)f (0
8、),得f (x)f (x)所以f (x)為奇函數(2)設x1,x2R,xx2x1>0,那么yf (x2)f (x1)f (x2)f (x1)f (x2x1)f (x)因為x >0,所以y<0,所以f (x)在R上是減函數(3)因為f (1),所以f (2)f (1)f (1);f (3)f (1)f (2)2;f (3) f (3)2;f (6)f (3)f (3)4由(2)知f (x)在3,6上,所以求f (x)在3,6上的最大值為f (3)2,最小值為f (6)4 10(12分)已知定義在區間(0,)上的函數f (x)滿足f ()f (x2)f (x1),且當x>1
9、時,f (x)<0(1)證明:f (x)為單調遞減函數(2)若f (3)1,求f (x)在2,9上的最小值解:(1)設x1,x2(0,),xx2x1>0,那么yf (x2)f (x1)f ()因為當>1時,f (x)<0,>1,所以f ()<0,y>0,所以f (x)為單調遞減函數(2)因為f (x)在(0,)上是單調遞減函數,所以f (x)在2,9上的最小值為f (9)由f ()f (x1)f (x2)得,f ()f (9)f (3),而f (3)1,所以f (9)2所以f (x)在2,9上的最小值為211(12分)定義域為(,0)(0,)的函數f
10、(x)滿足f (x)f (y)f (xy)(1)求證:f ()f (x);(2)求證:f (x)為偶函數;(3)當>1時,f (x)>0,求證:f (x)在(,0)上單調遞減解:(1)取xy1代入f (x)f (y)f (xy),得f (1)0取y 代入f (x)f (y)f (xy),得f (x)f ()0,故f ()f (x)(2)取y1代入f (x)f (y)f (xy),得f (x)f (1)f (x)取xy1代入f (x)f (y)f (xy),f (1)f (1)f (1),所以f (1)0所以f (x)f (x),f (x)為偶函數(3)解法1:設x1,x2(0,),
11、xx2x1>0,那么yf (x2)f (x1)f (x2)f ()f ()因為>1,所以f ()>0,y>0,所以f (x)在(0,)上單調遞增由(2)知f (x)為偶函數,所以f (x)在(,0)上單調遞減解法2:設x1,x2(,0),xx2x1>0,那么yf (x2)f (x1)f (x2)f ()f ()f ()因為>1,所以f ()>0,y<0,所以f (x)在(,0)上單調遞減12(12分)設定義在R上的函數yf (x)滿足f (ab)f (a)·f (b)當x>0時,f (x)>1,且f (0)0(1)求證:f
12、(0)1;(2)求證:f (x)>0;(3)求證:f (x)是R上的增函數;(4)若f (x)·f (2xx2)>1,求x的取值范圍解:(1)取ab0代入f (ab)f (a)·f (b),得f (0)2f (0),因為f (0)0,所以f (0)1(2)ax,bx代入f (ab)f (a)·f (b),得f (0)f (x)·f (x),即f (x)當x>0時,f (x)>1;x0時,f (x)1;當x<0時,x>0,f (x)>1,所以f (x)(0,1)綜上,f (x)>0(3)設x1,x2R,xx2
13、x1>0,那么yf (x2)f (x1)f (x1x)f (x1)f (x1)f (x)f (x1)f (x1)f (x)1 因為 xx2x1>0,所以f (x)>1,故y>0,f (x)是R上的增函數(4)f (x)·f (2xx2)f (x2xx2)f (3xx2),1f (0),所以不等式f (x)·f (2xx2)>1可化為f (3xx2)> f (0)由(2)知3xx2>0,得x的取值范圍為(0,3)13(12分)已知定義在R上的不恒為零的函數f (x)滿足 f (xy)y f (x)x f (y)(1)判斷f (x)的奇
14、偶性;(2)若f (2)2,設an ,bn ,求證數列an 為等差數列,數列bn 為等比數列解:(1)取xy1代入f (xy)y f (x)x f (y),得f (1)0取xy1代入f (xy)y f (x)x f (y),得f (1)0取y1代入f (x)f (x)x f (1),得f (x)f (x) ,所以f (x)為奇函數(2)因為f (2n1)f (2·2n)2 f (2n)2n f (2),所以f (2n1)2 f (2n)2n1同除以2n1,得 1,即an1an1,所以數列an 為等差數列a1 1,所以 an a1(n1)×1n,所以f (2n)2n因為2,所
15、以數列bn 為等比數列14(12分)定義在(0,¥)上的函數f (x)滿足:對任意實數m,f (xm)mf (x);f (2)1(1)求證:f (xy)f (x)f (y);(2)求證:f (x)是(0,¥)上的單調增函數;(3)若f (x)f (x3)2,求x的取值范圍解:(1)因為x,y均為正數,根據指數函數性質可知,總有實數m,n使得x2m,y2n于是f (xy)f (2m2n)f (2m+n)(m+n)f (2)m+n而mm f (2) f (2m) f (x), nn f (2) f (2n) f (y),所以f (xy)f (x)+f (y)(2)取xy1代入f
16、 (xy)f (x)f (y),得f (1)0取y 代入f (1)f (x)f (),得f (x)f ()設x1,x2(0,¥),xx2x1>0,那么yf (x2)f (x1)f (x2)f ()f ()因為>1,根據指數函數性質可知,總有正實數r,使得 2r,所以yf (2r)r>0因此f (x)是(0,¥)上的單調增函數(3)由(1)知若f (x)f (x3)f (x23 x),2 f (2)f (2)f (4)所以不等式f (x)f (x3)2即f (x23 x)f (4)由得x的取值范圍為(3,4 15(12分)定義在0,1上的函數f (x)滿足f
17、 (x) 0,f (1)1當x1 0,x2 0,x1x2 1時,f (x1x2) f (x1)f (x2) (1)求f (0);(2)求f (x)最大值;(3)當x0,1時,4f (x)24(2a)f (x)54a,求實數a 的取值范圍解:(1)因為f (x) 0,所以f (0) 0取x1x20代入f (x1x2) f (x1)f (x2)得f (0) 0,因此f (0)0(2)設x1,x20,1,xx2x1>0,則x0,1,所以f (x) 0yf (x2)f (x1)f (x1x) f (x1) f (x1 )f (x) f (x1)f (x) 0所以函數f (x)在0,1上不是減函數
18、,f (x)最大值是f (1)1(3)當x0,1時,f (x) 0,1若f (x)1,則44(2a)54a1,不等式4f (x)24(2a)f (x)54a成立若f (x) 0,1),分離參數a1f (x) 因為1f (x) 21,當f (x)時等號成立所以實數a的取值范圍是(¥,1備選:1(12分,重慶)已知定義域為R的函數f (x)滿足f (f (x)x2x)f (x)x2x(1)若f (2)3,求f (1);(2)求f (0);(3)設有且僅有一個實數x0,使得f (x0)x0,求函數f (x)的解析表達式2(12分)已知函數f (x)滿足f (xy)f (y)(x2y1)x,且f (1)0(1)求f (0)的值;(2)當x1,x2(0,)時, f (x1)2<logax2,求a的取值范圍3(12分)已知偶函數f (x)滿足f (xy)f (x)f (
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 錫礦選礦廠生產調度與優化考核試卷
- 質檢技術與質量風險分析考核試卷
- 隔音材料在酒店客房設計中的應用考核試卷
- 麻醉人力應急預案
- 怎樣判斷新生兒黃疸的程度輕重
- 常見疾病臍帶護理
- 兒童飲用水衛生常識
- 金融機構風險管理數字化轉型的法律法規與政策解讀報告
- 虛擬現實(VR)設備在房地產營銷中的創新策略與市場潛力分析報告
- 2025年零售電商行業社交電商發展趨勢與案例分析
- 2023年廣東初中學業水平考試生物試卷真題(含答案)
- 奶茶店消防應急預案
- 工程制圖及機械CAD基礎知到章節答案智慧樹2023年吉林大學
- 初級會計職稱考試教材《初級會計實務》
- 第二十二課-重屬和弦前方的共同和弦
- 碳酸飲料生產工藝流程圖
- 帶電跨越10kV線路施工方案
- 土壤肥料學野外教學實習分析
- GB/T 8012-2000鑄造錫鉛焊料
- GB/T 5169.5-2020電工電子產品著火危險試驗第5部分:試驗火焰針焰試驗方法裝置、確認試驗方法和導則
- GB/T 21835-2008焊接鋼管尺寸及單位長度重量
評論
0/150
提交評論