【圖文】第五節極限的運算法則及存在準則_第1頁
【圖文】第五節極限的運算法則及存在準則_第2頁
【圖文】第五節極限的運算法則及存在準則_第3頁
【圖文】第五節極限的運算法則及存在準則_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 極限的幾種類型: 1 簡單型 由運算法則直接求出結果 : 例1 求 lim(4 x 3 - x 2 + 3. x®2 解 lim(4 x 3 - x 2 + 3 = lim 4 x 3 - lim x 2 + lim 3 x®2 x ®2 x ®2 x ®2 = 4 (lim x 3 - (lim x 2 + 3 = 4 ´ 2 3 - 2 2 + 3 = 31 x ®2 x ®2 一般地, 設n次多項式為 Pn ( x = a n x n + a n-1 x n-1 + L + a1 x + a 0 , 則 即

2、 x ® x0 n n lim Pn ( x = an x0 + an-1 x0 -1 + L + a1 x0 + a0 , x ® x0 lim Pn ( x = Pn ( x0 . x + 3x + 7 = 例 2 lim x ® -1 x +2 2 x ® -1 lim ( x 2 + 3 x + 7 x ® -1 lim ( x + 2 -12 + 3( -1 + 7 5 ( = = =5 -1 + 2 1 注 : 一般地 , 求有理函數當 x ® x0 的極限時 若分母的極限不為零, x = x0 代入有理 把 函數直接求函

3、數值 , 即為該函數的極限。 2x - 1 2 ´ 2 - 1 例 lim 2 = 2 =3 x®2 x - 3 2 -3 0 2 型 ( 記號 0 2 x -4 = lim ( x + 2 = 2 + 2 = 4 例 3 lim x ®2 x - 2 x ®2 【注】 對分子、分母極限均為 0 情形的有理式 , 先約 去分子分母的公因子 , 再求極限,不能直接使用法則 3 練習: x - 16 求 lim . x ®4 x - 4 x 2 - 16 解 lim = lim( x + 4 = 4 + 4 = 8 x ®4 x - 4

4、x ®4 2 ¥ 3 ¥ 型 ( 記號 3 x2 + x + 1 lim 例 4 x ®¥ 2 - + 2x x 1 = 3 2 1 + + 3 x = lim x ®¥ 1 2- + x 1 lim ( 3 + 2 x = x ®¥ 1 lim( 2 x2 x ® ¥ 1 + x 1 + x 1 2 x 1 2 x 1 5 1 5 + 2 + 2 lim ( +5 x x x = x ®¥ x x = 0 = 0 = lim 例 5 lim 2 x ®&

5、#165; x - 9 x ®¥ 9 9 - 2 - 2 1 1 lim (1 x ®¥ x x ¥ 【注】對 ¥ 型 的有理式函數的極限 , 由于分子分母極限 為 ¥ , 極限不存在 , 不能用法則 3 , 先對分子 、分母同 除以 x 的最高次冪再求極限。 4 x3 + 2 x - 1 練習: 求 lim . 2 x ®¥ x +3 2 1 4+ 2 - 3 3 4x + 2x - 1 x x = lim lim 解 =¥ 2 x ®¥ x ®¥ 1 3 x +3 + x x3 一般地 , 設a0 ¹ 0, b0 ¹ 0 , m, n 為正整數 , 則 a0 x n + a1 x n-1 + a2 x n- 2 + L + an = lim m m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論