(參考)《勾股定理》說課稿_第1頁
(參考)《勾股定理》說課稿_第2頁
(參考)《勾股定理》說課稿_第3頁
(參考)《勾股定理》說課稿_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、勾股定理說課稿八年級上冊第二章第一節(jié)一、教材分析本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個直角“形”的特點轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的

2、典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計算的格點圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊一般特殊的思想。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認(rèn)識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計算問題二、教學(xué)目標(biāo)1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。2、讓學(xué)生經(jīng)歷拼圖實驗、

3、計算面積的過程,在過程中養(yǎng)成獨立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價值3、能說出勾股定理,并能用勾股定理解決簡單問題三、教學(xué)重點勾股定理的探索過程四、教學(xué)難點將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積五、教學(xué)方法與教學(xué)手段采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索六、教學(xué)過程(一)創(chuàng)設(shè)情境 提出問題1同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?2如

4、果又已知這兩邊的夾角,那么第三邊的長是多少?3已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題板書:直角三角形三邊數(shù)量關(guān)系(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo)讓學(xué)生體會到當(dāng)一般性的問題不好解決時,可以先將一般問題轉(zhuǎn)化為特殊問題來研究)(二)實踐探索 猜想歸納1、用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?(學(xué)生討論)課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式今天,讓

5、我們試一試通過計算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系(從學(xué)生已有的學(xué)習(xí)經(jīng)驗出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心)2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形若將圖形、剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?(同位利用教師提供的學(xué)案,合作拼圖。)通過拼圖,你有什么發(fā)現(xiàn)?(如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積拼圖活動,引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動手能力體現(xiàn)了活動數(shù)學(xué)的思想)3、

6、拼圖活動引發(fā)我們的靈感;運算推演證實我們的猜想為了計算面積方便,我們可將這幅圖形放在方格紙中如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4)(學(xué)生容易回答SP=9,SQ=16。)你是如何得到的?(可以數(shù)圖形中的小方格的個數(shù),也可以通過正方形面積公式計算得到。)如何計算 ?(求法是這節(jié)課的難點,這時可讓學(xué)生先在學(xué)案上獨立分析,再通過小組交流,最后由小組代表到臺前展示學(xué)生可能提出割(圖5)、補(bǔ)(圖6)、平移(圖7)、旋轉(zhuǎn)(圖8)等方法,旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,若有學(xué)生提出,應(yīng)提醒學(xué)生)4、肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示從小明、小

7、麗的方法中你能得到什么啟發(fā)?(把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計算面積的圖形,讓學(xué)生體會將較難的問題轉(zhuǎn)化為簡單問題的思想)5、再給出直角邊為5和3的直角三角形(圖9),讓學(xué)生計算分別以三邊作為邊所作的正方形面積(這是轉(zhuǎn)化思想,也是“割補(bǔ)”方法的再一次應(yīng)用在前面的探求過程中有的學(xué)生沒能自己做出來,提供再一次的機(jī)會,可讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗成功的樂趣)通過計算,你發(fā)現(xiàn)這三個正方形面積間有什么關(guān)系嗎?(SP+SQ=SR,要給學(xué)生留有思考時間)6、通過以上的實驗、操作、計算,我們發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢

8、?同學(xué)們還有什么疑問嗎?,本文轉(zhuǎn)自教育文稿網(wǎng) aaaeduwgaaa 轉(zhuǎn)載請注明出處.(以直角邊為邊所作的正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長為整數(shù)的直角三角形情況,那么邊長是小數(shù)時,結(jié)論是否成立?教師就演示以下實驗。) 利用方格紙,我們方便計算直角邊為整數(shù)的情況,若直角邊為小數(shù)時,所得到的正方形面積之間也有如上關(guān)系嗎?將網(wǎng)格線去掉,利用幾何畫板的度量工具可以看到SP+SQ=SR(利用幾何畫板的高效性、動態(tài)性反映這一過程,讓學(xué)生體會到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻)7、我們這節(jié)課是探索直角三角形三邊數(shù)

9、量關(guān)系至此,你對直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?(面積是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方)(這一問題的結(jié)論是本節(jié)課的點睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá))8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國悠久歷史文化,激勵學(xué)生發(fā)奮學(xué)習(xí)的情感)9、閱讀課本,提出問題(讓學(xué)生有將知識內(nèi)化為自己的知識結(jié)構(gòu)的過程,教師巡視,對有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)

10、原則)(三)課堂練習(xí) 鞏固新知1完成課本第45頁練習(xí)第1題、第2題(1)求下列直角三角形中未知邊的長:(2)求下列圖中未知數(shù)x、y、z的值:(充分利用課本,在前面閱讀的基礎(chǔ)上做課本上的練習(xí)題。提問學(xué)生口答,老師再規(guī)范板書一題通過對勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊)2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學(xué)生沿對角線踏出了一條斜“路”,這種情況在生活中時有發(fā)生。請問同學(xué)們:(1)這幾位同學(xué)為什么不走正路,走斜“路”?(2)他們知道走斜“路”比正路少走幾步嗎?(3)他們這樣這樣做,值得嗎?(這是一道貼近學(xué)生生活的實例,在勾股定

11、理的運用中滲透了德育教育)(四)課堂小結(jié) 布置作業(yè)1、通過本節(jié)課的學(xué)習(xí),大家有什么收獲?有什么疑問?你認(rèn)為還有什么要繼續(xù)探索的問題?(學(xué)生總結(jié)本堂課的收獲,可以是知識、應(yīng)用、數(shù)學(xué)思想方法以及獲取新知的途徑等給學(xué)生自由的空間,鼓勵學(xué)生多說這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生的綜合表達(dá)能力如果學(xué)生沒有提出繼續(xù)要探討的問題,教師可以引導(dǎo)學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內(nèi)容,首尾呼應(yīng),激發(fā)

12、學(xué)生不滿足于現(xiàn)狀,有不斷提出新問題的欲望,即培養(yǎng)學(xué)生的創(chuàng)新意識)2、作業(yè)(1)課本第471頁第2題,并完成第45頁的實驗。(2)在以下網(wǎng)頁中你可以找到有關(guān)勾股定理的豐富的內(nèi)容,請你結(jié)合本節(jié)課的學(xué)習(xí)和從網(wǎng)上或書本上自學(xué)到的知識寫一篇有關(guān)勾股定理的小論文,題目自定,一周后交給課代表并展示交流(作業(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)七、教學(xué)設(shè)計說明:本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察-猜想-歸納-驗證-應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想本節(jié)課從學(xué)生的原有認(rèn)知出發(fā)提出問題,揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的

13、認(rèn)知心理教科書設(shè)計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎(chǔ)上,為了更好地展示這一探索過程,本節(jié)課先讓學(xué)生回顧利用圖形面積探求數(shù)學(xué)公式的經(jīng)歷,以此確定研究方法繼而設(shè)計了剪紙活動,從中引發(fā)學(xué)生的猜想,再利用幾何畫板這一工具帶領(lǐng)學(xué)生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學(xué)生充分經(jīng)歷這一觀察、猜想、歸納的過程其中SR的求法是探求過程中的難點,應(yīng)讓學(xué)生充分地思考、討論、總結(jié)方法通過對特殊到一般的考查,讓學(xué)生主動建立由數(shù)到形,由形到數(shù)的聯(lián)想,從中使學(xué)生不斷積累數(shù)學(xué)活動的經(jīng)驗,歸納出直角三角形三邊數(shù)量之間的關(guān)系在教學(xué)中鼓勵學(xué)生采用觀察分析,自主探索,合作交流的學(xué)習(xí)方法,培養(yǎng)學(xué)生主動的動手,動腦,動口的學(xué)習(xí)習(xí)慣和能力,使學(xué)生真正成為學(xué)習(xí)的主人除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用題目的設(shè)計中滲透了德育教育,拓展了學(xué)生的空間思維,使得一節(jié)幾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論