




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、蜂窩式無線通訊系統自動控制方法來分析在惡劣環下混凝土結構的耐久性摘要:這篇文章描述了一種解決在外部荷載作用下混凝土結構耐久性分析和壽命評估問題的新穎的方法。這個被提到的假說主要用于梁和框架,但是它也很容易擴展到其它結構類型。通過使用蜂窩式無線通訊系統自動控制來模仿這個散亂的過程。通過采用合適的材料降解法來評價散亂的機械損傷。由于質量擴散的速度通常取決于應力狀態,已壞結構的擴散過程和力學特性也通過建立一個合適的質量傳遞中的隨機效應模型來考慮。為了這個目的,在這段時間的非線性結構分析在 有限元框架 中 通過一個不斷惡化的鋼筋混凝土梁單元的方法來完成。在處理復雜的幾何和力學邊界條件方面,所提到的一套
2、方法的效果被證明是有用的。首先,鋼筋混凝土箱形梁橫截面被考慮,所造成的破壞性進程通過相應的彎矩曲率圖和軸力彎矩抵抗域來描述。其次,鋼筋混凝土連續t - 梁的耐久性分析被發展了。最后,所提到的方法應用于已建拱橋的分析和它的重要構件的鑒定。 令人滿意的結構特性通常被描述成參照特定的把結構的理想狀態與不理想狀態分開的極限狀態。在這方面,結構設計的主要目的是在結構的整個使用壽命過程中,對于每個指定的極限狀態保證有足夠的結構性能水平。一般來說,作用效應s小于或等于結構抗力r時,結構是安全的。然而,對于混凝土結構,結構性能必須被認為是不定常的,主要是因為 材料力學性能的逐步惡化,這使結構系統不足以承擔施加
3、的荷載。因此,所需的作用效應s和結構抗力r可能隨時間而變,并且導致實際壽命的可靠評估的結構耐久性分析 ta 應該能夠 需要這種 變異。如此,設計者能夠解決概念設計過程或者設計結構修復以使結構壽命達到規定的設計值。接下來,注意力應該主要集中在破壞過程,包括環境侵略性攻擊擴散劑,例如能夠導致混凝土惡化和鋼筋腐蝕的硫酸鹽和氯化物。這種過程包括一些因素,例如溫度和濕度。它的動態受是由熱度,濕度和各種化學物質組成。另外,破壞包括由機械載荷與環境因素的相互作用,加速惡了化過程。基于先前的考慮,在惡劣的環境下混凝土結構的耐久性分析應該能夠包括擴散過程和相應的機械損傷,以及在擴散、破壞、結構狀態之間的耦合效應
4、。然而,關于環境因素和材料特性的可用信息通常是非常有限的,并且在詳細和復雜的模型中不可避免的不確定性可能導致虛構的結果。基于這些原因,結構壽命的評估可以通過宏觀模型來進行而變得更可靠,模型是用來開發擴散基本規律的影響力和通用性而用于定量預測損壞結構體系的時變反應。這篇文章描述了一個在環境侵襲下混凝土結構耐久性分析的新穎方法。 這個被提到的假說主要用于梁和框架,但是它也很容易擴展到其它結構類型。擴散過程的分析通過使用一類被稱作細胞自動機的特殊進化算法來進行,這種方法把實際系統數學理想化,在這種方法中,空間和時間是彼此分離的,物質的量來源于一個有限集分離的價值。原則上,任何滿足不同平衡的物理系統通
5、過引入離散坐標系和變量,以及離散的時間步驟可近似為一個細胞自動機。然而,值得指出的是基于細胞自動機的模型提供了一個物理模型而不是一個近似可供選擇的方法。值得注意的是, 在混凝土中,典型物理過程的元胞自動機模型的例子在水泥復合材料領域可以發現。事實上,它們表述了一個復雜的性能,類似于與微分方程相關聯,但是由于它們簡單的公式化的表述更有潛力適用于更復雜,更完整的系統,提供給整個系統一些突發的性質,只有通過它的本身動態自我包括。基于這個演化模型,耦合擴散的機械損傷 通過引入混凝土和鋼筋有效抵抗區的降級理論,依據合適的損傷指數來評估的。由于擴散的比率通常取決于應力狀態,損壞結構的擴散過程和機械性能之間
6、的相互作用通常也通過一個合適的質量傳遞隨機效應的模型來考慮。為了這個目的,在這段時間的非線性結構分析在有限元框架中通過一個不斷惡化的鋼筋混凝土梁單元的方法來完成。在處理復雜的幾何和力學邊界條件方面,所提到的一套方法的效果被證明是有用的。首先,鋼筋混凝土箱形梁橫截面被考慮,所造成的破壞性進程通過相應的彎矩曲率圖和軸力彎矩抵抗域來描述。其次,鋼筋混凝土連續t - 梁的耐久性分析被發展了。最后,所提到的方法應用于已建拱橋的分析和它的重要構件的鑒定。擴散過程模型擴散過程和細胞自動機固體中化學成分擴散的動力學過程通常通過把大規模擴散率與造成網狀系統質量傳遞原因的濃度梯度聯系起來的數學關系來表述(glic
7、ksman 2000)。 最簡單的模型是由fick第一定律來描述的,這個定律假定質量轉移與擴散梯度之間是線性關系。fick的模型與質量守恒定律的結合產生了fick第二定律,這個定律在各向同性介質中單個組合的情況下可以寫成一下形式:其中:c=c(x, t)=該組件的質量濃度d=(x, t)=擴散系數x=(x, y , z)時間 tc=grad c. 導致這個簡單模型修改的復雜性可能產生于各向異性,多組分擴散,化學反應,外部的應力場,內存和隨機效應。例如,在混凝土結構而言,擴散系數取決于幾個參數,如相對濕度,溫度和機械應力,ficks方程,必須與熱和水分的流動方程,以及力學問題構成原理相結合。然而
8、,像所提到的,由于這些模型校準的不確定性,用宏觀的方法評估結構壽命更容易進行,它利用ficks定律的力量和通用性預測進經受擴散的系統的定量反應。尤其,如果擴散系數d被假定為一個常數,二階非線性偏微分方程(1)被簡化成以下線性形式,其中,盡管方程是線性的,但是這種方程的解析解只存在于一些有限的簡單經典問題中。因此,處理復雜幾何和力學邊界條件的一般方法通常需要使用數值方法。在這項研究中,通過使用一類特殊的進化算法稱為細胞自動機的方法有效地解決了擴散方程。細胞自動機首次是在19481950被neumann and ulam首次引進的,接下來其他的研究人員在許多科學領域應用它。起初,涉及到對圖靈機的自
9、我復制問題的研究,細胞自動機在20世紀70年代離開實驗室,并在學術界隨著conway發明的著名游戲流行 。基本上,他們代表了簡單的物質系統數學理想化,在這一系統,空間和時間是不分離的,物理量取自一個離散值的有限集合。事實上,如前所述, 通過引入離散坐標和變量,以及離散時間的步驟,任何滿足微分方程的物理系統可近似作為細胞自動機。因此,合理地說,基于細胞自動機的模型提供了一個可供選擇和更廣泛的物理模型而不是近似值的方法 。他們表現出復雜的行為,類似于復雜的微分方程,但是,在這種情況下,根據簡單的規則從簡單的實體之間的相互作用出現8cellular automata approach to dura
10、bility analysis of concrete structures in aggressive environmentsabstract: this paper presents a novel approach to the problem of durability analysis and lifetime assessment of concrete structures(under the diffusive attack from external aggressive agents.the proposed formulation mainly refers to be
11、ams and frames, but it can be easily extended also to other types of structures. the diffusion process is modeled by using cellular automata. the mechanical damage coupled to diffusion is evaluated by introducing suitable material degradation laws. since the rate of mass diffusion usually depends on
12、 the stress state, the interaction between the diffusion process and the mechanical behavior of the damaged structure is also taken into account by a proper modeling of the stochastic effects in the mass transfer to this aim , the nonlinear structural analyses during time are performed within the fr
13、amework of the finite element method by means of a deteriorating reinforced concrete beam element . the effectiveness of the proposed methodology in handling complex geometrical and mechanical boundary conditions is demonstrated through some applications. firstly , a reinforced concrete box girder c
14、ross section is considered and the damaging process is described by the corresponding evolution of both bending moment-curvature diagrams and axial force-bending moment resistance domains . secondly, the durability analysis of a reinforced concrete continuous t - beam is developed. finally, the prop
15、osed approach is applied to the analysis of an existing arch bridge and to the identification of its critical members. introduction satisfactory structural performance is usually described with reference to a specified set of limit states, which separate desired states of the structure from the unde
16、sired ones. in this context, the main objective of the structural design is to assure an adequate level of structural performance for each specified limit state during the whole service life of the structure. from a general point of view, a structure is safe when the effects of the applied actions s
17、 are no larger than the corresponding resistance r. however , for concrete structures the structural performance must be considered as time dependent , mainly because of the progressive deterioration of the mechanical properties of materials which makes the structural system less able to withstand t
18、he applied actions . as a consequence, both the demand s and the resistance r may vary during time and a durability analysis leading to a reliable assessment of the actual structural lifetime ta should be able to account for such variability (sa1ja and vesikari 1996; enright and frangopol 1998a, 199
19、8b). in this way, the designer can address the conceptual design process or plan the rehabilitation of the structure in order to achieve a prescribed design value td of the structural lifetime.in the following , the attention will be mainly focused on the damaging process induced by the diffusive at
20、tack of environmental aggressive agents , like sulfate and chloride , which may lead to deterioration of concrete and corrosion of reinforcement ( ceb 1992 ) . such process involves several factors, including temperature and humidity . its dynamics is governed by coupled diffusion process of heat, m
21、oisture, and various chemical substances. in addition, damage induced by mechanical loading interacts with the environmental factors and accelerates the deterioration process( saetta et al. 1993 , xi and bazant 1999 ; xi et al . 2000 ; kong et al . 2002 ) . based on the previous considerations, a du
22、rability analysis of concrete structures in aggressive environments should be capable to account for both the diffusion process and the corresponding mechanical damage, as well as for the coupling effects between diffusion, damage and structural behavior. however, the available information about env
23、ironmental factors and material characteristics is often very limited and the unavoidable uncertainties involved in a detailed and complex modeling may lead to fictitious results. for these reasons , the assessment of the structural lifetime can be more reliably carried out by means of macroscopic m
24、odels which exploit the power and generality of the basic laws of diffusion to predict the quantitative time-variant response of damaged structural systems . this paper presents a novel approach to the durability analysis of concrete structures under the environmental attack of aggressive agentsthe
25、proposed formulation mainly refers to beams and frames, but it can be easily extended also to other types of structures. the analysis of the diffusion process is developed by using a special class of evolutionary algorithms called cellular automata, which are mathematical idealizations of physical s
26、ystems in which space and time are discrete and physical quantities are taken from a finite set of discrete values.in principle, any physical system satisfying differential equations may be approximated as a cellular automaton by introducing discrete coordinates and variables, as well as discrete ti
27、me steps.however, it is worth noting that models based on cellular automata provide an alternative approach to physical modeling rather than an approximation.in fact, they show a complex behavior analogous to that associated with differential equations, but by virtue of their simple formulation are
28、potentially adaptable to a more detailed and complete analysis, giving to the whole system some emergent properties, self-induced only by its local dynamics (von neumann 1966; margolus and toffoli 1987; wolfram 1994, 2002; adami1998).noteworthy examples of cellular automata modeling of typical physi
29、cal processes in concrete can be found in the eld of cement composites (bentz and garboczi 1992; bentz et al. 1992,1994). based on such an evolutionary model, the mechanical damage coupled to diffusion is then evaluated by introducing a degradation law of the effective resistant area of both the con
30、crete matrix and steel bars in terms of suitable damage indices.since the rate of mass diffusion usually depends on the stress state, the interaction between the diffusion process and the mechanical behavior of the damaged structure is also taken into account by a proper modeling of the stochastic e
31、ffects in the mass transfer.to this aim, the nonlinear structural analyses during time are performed within the framework of the finite element method by means of a deteriorating reinforced concrete beam element (bontempi et al. 1995;malerba 1998; biondini 2000). the effectiveness of the proposed me
32、thodology in handlingcomplex geometrical and mechanical boundary conditions isdemonstrated through some applications. firstly, a reinforcedconcrete box girder cross-section is considered and the damaging process is described by the corresponding evolution of both bending momentcurvature diagrams and
33、 axial force-bending moment resistance domains. secondly, the durability analysis of a rein-forced concrete continuous t-beam is developed. finally, the proposed approach is applied to the analysis of an existing arch bridge and to the identification of its critical members.diffusion processes and c
34、ellular automatamodeling of diffusion processesthe kinetic process of diffusion of chemical components in solids is usually described by mathematical relationships that relate the rate of mass diffusion to the concentration gradients responsible for the net mass transfer (glicksman 2000). the simple
35、st model is represented by the ficks first law, which assumes a linear relationship between the mass ux and the diffusion gradient. the combination of the ficks model with the mass conservation principle leads to ficks second law which, in the case of a single component diffusion in isotropic media,
36、 can be written as follows:where c=c(x, t)=mass concentration of the component and d=(x, t)=diffusivity coefficient, both evaluated at pointx=(x, y , z) and time t, and where c=grad c. complexities leading to modifications of this simple model may arise from anisotropy, multicomponents diffusion, ch
37、emical reactions, external stress fields, memory and stochastic effects. in the case of concrete structures, for example, the diffusivity coefficient depends on several parameters, such as relative humidity,temperature, and mechanical stress, and the ficks equations must be coupled with the governin
38、g equations of both heat and moisture flows, as well as with the constitutive laws of the mechanical problem (ceb 1992; saetta et al. 1993; xi and baant 1999; xi etal. 2000). however, as mentioned, due to the uncertainties involved in the calibration of such complex models, the structural lifetime c
39、an be more conveniently assessed by using a macroscopic approach which exploits the power and generality of the basic ficks laws to predict the quantitative response of systems undergoing diffusion. in particular, if the diffusivity coefficient d is assumed to be a constant, the second order partial
40、 differential nonlinear eq. (1) is simplied in the following linear form:where despite of its linearity, analytical solutions of such an equation exist only for a limited number of simple classical problems. thus, a general approach dealing with complex geometrical and mechanical boundary conditions
41、 usually requires the use of numerical methods. in this study, the diffusion equation is effectively solved by using a special class of evolutionary algorithms called cellular automata.short history, formal definition, and emergingproperties of cellular automatacellular automata were firstly introdu
42、ced by von neumann and ulam in 19481950 (von neumann 1966) and subsequently developed by other researchers in many fields of science (see for reviews: margolus and toffoli 1987; adami 1998; wolfram 2002).originally related to the study of self-replication problems on the turings machine, cellular au
43、tomata left laboratories in the 1970s and became popular in the academic circles with the now famous game of life invented by conway (gardner 1970). basically, they represent simple mathematical idealizations of physical systems in which space and time are discrete, and physical quantities are taken from a finite set
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆四川省雙流藝體中學高一化學第二學期期末學業水平測試試題含解析
- 2025屆云南省曲靖市羅平縣一中化學高二下期末監測模擬試題含解析
- 山西省孝義市2025屆化學高二下期末聯考模擬試題含解析
- 2025屆上海市上海交大附中高一化學第二學期期末復習檢測試題含解析
- 2025屆山東省蓬萊第二中學化學高二下期末學業質量監測試題含解析
- 吉林省舒蘭一中2025屆化學高一下期末復習檢測模擬試題含解析
- 湖北省當陽市第二高級中學2025屆高一下化學期末達標檢測試題含解析
- 福建泉州市2025年高二下化學期末達標檢測試題含解析
- 機耕道路維護管理辦法
- 內部成員沖突管理辦法
- 老舊住宅小區綜合整治裝飾裝修工程施工方案
- 小兒腸梗阻護理課件
- 2024-2025學年譯林版新七年級英語上冊Unit2《Hobbies》單元卷(含答案解析)
- 遼寧省大連市甘井子區2023-2024學年七年級下學期期末生物學試題(原卷版)
- 5國家機構有哪些 第一課時(教學設計)部編版道德與法治六年級上冊
- AQ/T 1118-2021 礦山救援培訓大綱及考核規范(正式版)
- 2024屆甘南市語文八年級第二學期期末聯考試題含解析
- 無人機航空測繪與后期制作 課件 第十二課時 現場飛行流程
- 2024年梅州市大埔縣重點中學小升初語文入學考試卷含答案
- 2022-2023學年北京市東城區高二(下)期末化學試卷(含解析)
- 防溺水老師培訓課件
評論
0/150
提交評論