2023-2024學年內蒙古達標名校中考聯考數學試題含解析_第1頁
2023-2024學年內蒙古達標名校中考聯考數學試題含解析_第2頁
2023-2024學年內蒙古達標名校中考聯考數學試題含解析_第3頁
2023-2024學年內蒙古達標名校中考聯考數學試題含解析_第4頁
2023-2024學年內蒙古達標名校中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年內蒙古達標名校中考聯考數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小文同學統計了某棟居民樓中全體居民每周使用手機支付的次數,并繪制了直方圖.根據圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數為28~35次的人數最多③有的人每周使用手機支付的次數在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④2.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a= B.a=2b C.a=b D.a=3b3.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值24.化簡-32A.﹣23B.﹣23C.﹣65.計算﹣2+3的結果是()A.1 B.﹣1 C.﹣5 D.﹣66.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.87.不等式的解集在數軸上表示正確的是()A. B. C. D.8.如圖,數軸上有A,B,C,D四個點,其中表示互為倒數的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C9.如圖,AB是⊙O的弦,半徑OC⊥AB于點D,若⊙O的半徑為5,AB=8,則CD的長是()A.2B.3C.4D.510.實數a、b、c在數軸上的位置如圖所示,則代數式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b11.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>212.如圖,折疊矩形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.24二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:________.14.如圖,在每個小正方形的邊長為1的網格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的.15.在平面直角坐標系中,若點P(2x+6,5x)在第四象限,則x的取值范圍是_________;16.如圖,的半徑為,點,,,都在上,,將扇形繞點順時針旋轉后恰好與扇形重合,則的長為_____.(結果保留)17.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.18.已知一個正多邊形的內角和是外角和的3倍,那么這個正多邊形的每個內角是_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果精確到0.1米,參考數據:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)20.(6分)已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).求此拋物線的表達式;如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.21.(6分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.22.(8分)瑞安市曹村鎮“八百年燈會”成為溫州“申遺”的寶貴項目.某公司生產了一種紀念花燈,每件紀念花燈制造成本為18元.設銷售單價x(元),每日銷售量y(件)每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關系,其幾組對應量如下表所示:(元)19202130(件)62605840(1)根據表中數據的規律,分別寫出毎日銷售量y(件),每日的利潤w(元)關于銷售單價x(元)之間的函數表達式.(利潤=(銷售單價﹣成本單價)×銷售件數).當銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?根據物價局規定,這種紀念品的銷售單價不得高于32元,如果公司要獲得每日不低于350元的利潤,那么制造這種紀念花燈每日的最低制造成本需要多少元?23.(8分)請根據圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定:這兩種商品都打八折;乙商場規定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數)個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)24.(10分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?25.(10分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.26.(12分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.27.(12分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數y=的圖象經過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經過的路徑長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據直方圖表示的意義求得統計的總人數,以及每組的人數即可判斷.本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力.利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解.【詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結論錯誤;②每周使用手機支付次數為28~35次的人數最多,此結論正確;③每周使用手機支付的次數在35~42次所占比例為,此結論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結論錯誤;故選:B.【點睛】此題考查直方圖的意義,解題的關鍵在于理解直方圖表示的意義求得統計的數據2、B【解析】

從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點睛】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.3、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,

由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.4、C【解析】試題解析:原式=-32故選C.考點:二次根式的乘除法.5、A【解析】

根據異號兩數相加的法則進行計算即可.【詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點睛】本題主要考查了異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.6、D【解析】分析:根據二元一次方程組的解,直接代入構成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數是解題關鍵,比較簡單,是常考題型.7、B【解析】

根據不等式的性質:先移項,再合并即可解得不等式的解集,最后將解集表示在數軸上即可.【詳解】解:解:移項得,

x≤3-2,

合并得,

x≤1;

在數軸上表示應包括1和它左邊的部分,如下:;

故選:B.【點睛】本題考查了一元一次不等式的解集的求法及在數軸上表示不等式的解集,注意數軸上包括的端點實心點表示.8、A【解析】

試題分析:主要考查倒數的定義和數軸,要求熟練掌握.需要注意的是:倒數的性質:負數的倒數還是負數,正數的倒數是正數,0沒有倒數.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.根據倒數定義可知,-2的倒數是-,有數軸可知A對應的數為-2,B對應的數為-,所以A與B是互為倒數.故選A.考點:1.倒數的定義;2.數軸.9、A【解析】試題分析:已知AB是⊙O的弦,半徑OC⊥AB于點D,由垂徑定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故選A.考點:垂徑定理;勾股定理.10、A【解析】

根據數軸得到b<a<0<c,根據有理數的加法法則,減法法則得到c-a>0,a+b<0,根據絕對值的性質化簡計算.【詳解】由數軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點睛】本題考查的是實數與數軸,絕對值的性質,能夠根據數軸比較實數的大小,掌握絕對值的性質是解題的關鍵.11、D【解析】

根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.12、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、a(a+1)(a-1)【解析】

先提公因式,再利用公式法進行因式分解即可.【詳解】解:a(a+1)(a-1)故答案為:a(a+1)(a-1)【點睛】本題考查了因式分解,先提公因式再利用平方差公式是解題的關鍵.14、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.15、﹣3<x<1【解析】

根據第四象限內橫坐標為正,縱坐標為負可得出答案.【詳解】∵點P(2x-6,x-5)在第四象限,∴2x+解得-3<x<1.故答案為-3<x<1.【點睛】本題考查了點的坐標、一元一次不等式組,解題的關鍵是知道平面直角坐標系中第四象限橫、縱坐標的符號.16、.【解析】

根據題意先利用旋轉的性質得到∠BOD=120°,則∠AOD=150°,然后根據弧長公式計算即可.【詳解】解:∵扇形AOB繞點O順時針旋轉120°后恰好與扇形COD重合,

∴∠BOD=120°,

∴∠AOD=∠AOB+∠BOD=30°+120°=150°,

∴的長=.

故答案為:.【點睛】本題考查了弧長的計算及旋轉的性質,掌握弧長公式l=(弧長為l,圓心角度數為n,圓的半徑為R)是解題的關鍵.17、2【解析】

先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.18、1.【解析】

先由多邊形的內角和和外角和的關系判斷出多邊形的邊數,即可得到結論.【詳解】設多邊形的邊數為n.因為正多邊形內角和為(n-2)?180°,正多邊形外角和為根據題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內角是180°故答案為:1.【點睛】考查多邊形的內角和與外角和,熟練掌握多邊形內角和公式是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、29.8米.【解析】

作,,根據題意確定出與的度數,利用銳角三角函數定義求出與的長度,由求出的長度,即可求出的長度.【詳解】解:如圖,作,,由題意得:米,米,則米,答:這架無人飛機的飛行高度為米.【點睛】此題考查了解直角三角形的應用﹣仰角俯角問題,熟練掌握銳角三角函數定義是解本題的關鍵.20、(1)y=-(x-3)2+5(2)5【解析】

(1)設頂點式y=a(x-3)2+5,然后把A點坐標代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標,然后根據三角形面積公式求解.【詳解】(1)設此拋物線的表達式為y=a(x-3)2+5,將點A(1,3)的坐標代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數法求二次函數解析式,二次函數的性質,二次函數圖象上點的坐標特征,掌握待定系數法求二次函數的解析式是解題的關鍵.21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).22、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)當銷售單價為34元時,每日能獲得最大利潤,最大利潤是1元;(3)制造這種紀念花燈每日的最低制造成本需要648元.【解析】

(1)觀察表中數據,發現y與x之間存在一次函數關系,設y=kx+b.列方程組得到y關于x的函數表達式y=﹣2x+100,根據題意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根據二次函數的性質即可得到結論;(3)根據題意列方程即可得到即可.【詳解】解:(1)觀察表中數據,發現y與x之間存在一次函數關系,設y=kx+b.則,解得,∴y=﹣2x+100,∴y關于x的函數表達式y=﹣2x+100,∴w=(x﹣18)?y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴當銷售單價為34元時,∴每日能獲得最大利潤1元;(3)當w=350時,350=﹣2x2+136x﹣1800,解得x=25或43,由題意可得25≤x≤32,則當x=32時,18(﹣2x+100)=648,∴制造這種紀念花燈每日的最低制造成本需要648元.【點睛】此題主要考查了二次函數的應用,根據已知得出函數關系式.23、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】

(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數,∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【點睛】此題主要考查不等式的應用,解題的關鍵是根據題意找到等量關系與不等關系進行列式求解.24、(1)該校對50名學生進行了抽樣調查;(2)最喜歡足球活動的人占被調查人數的20%;(3)全校學生中最喜歡籃球活動的人數約為720人.【解析】

(1)根據條形統計圖,求個部分數量的和即可;(2)根據部分除以總體求得百分比;(3)根據扇形統計圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對50名學生進行了抽樣調查.(2)最喜歡足球活動的有10人,,∴最喜歡足球活動的人占被調查人數的20%.(3)全校學生人數:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學生中最喜歡籃球活動的人數約為2000×=720(人).【點睛】此題主要考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚的表示出每個項目的數據;扇形統計圖中各部分占總體的百分比之和為1,直接反應部分占全體的百分比的大小.25、(1)詳見解析;(2)30.【解析】

(1)利用切線的性質得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據切線的判定定理得到結論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數.【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論