應用eviews分析數據和預測_第1頁
應用eviews分析數據和預測_第2頁
應用eviews分析數據和預測_第3頁
應用eviews分析數據和預測_第4頁
應用eviews分析數據和預測_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

應用eviews分析數據和預測

01預備知識

ARIMA模型預測的基本程序:1)根據時間序列的散點圖、自相關函數和偏自相關

函數圖以ADF單位根檢驗其方差、趨勢及其季節性變化規律,對序列的平穩性進

行識別。一般來講,經濟運行的時間序列都不是平穩序列。2)對非平穩序列進行

平穩化處理如果數據序列是非平穩的,并存在一定的增長或卜?降趨勢,則需要

對數據進行差分處理,如果數據存在異方差,則需對數據進行技術處理,直到處

理后的數據的自相關函數值和偏相關函數值無顯著地異于零。3)根據時間序列模

型的識別規則,建立相應的模型。若平穩序列的偏相關函數是截尾的,而自相關

函數是拖尾的,可斷定序列適合AR模型;若平穩序列的偏相關函數是拖尾的,

而自相關函數是截尾的,則可斷定序列適合MA模型;若平穩序列的偏相關函數

和自相關函數均是拖尾的,則序列適合ARMA模型。4)進行參數估計,檢驗足否

具有統計意義。5)進行假設檢驗,診斷殘差序列是否為白噪聲。利用已通過檢驗

的模型進行預測分析。

02過程與步驟

本次選取A股市場一只股票從2019年8月至2022年8月份,前后涉及

732個交易日數據的分析。L建立Workfile和對象,錄入股票價格X和變

量t支出數據如圖2.6.k

O'=而aI

HocUtqectMmeDefaltv^ort1,E>oiefedt*/-lEe"Be

003XIT|

006TA

17*^00001MMOOA

275000002000000

7/WW3MXXXK)

484000004MK)000

sa^AOOOO5MOOOO

6esaoooo$?ooooo

rmoioi

884000008000000

984000009WXM

10e2300001000000

1181W8U113UOOO

1282800001200000

1383400001300000

15SUOOUOU150U00U

108.1200001600000

1781300001700000

1883100001600000

iyU4bOQOU19OUOOUV

20<>

一圖

2.6.12.雙擊打開x序列表格形式,點擊表格左端View\Gragh\Line,或者在命

令框中輸入“linex”。可以看出X是有一定時間趨勢的,如圖2.6.2。

X

28

100200300400500600700

圖2.6.2可見序列x具有明顯的趨勢和季節波動,宜采用模型3或模型2檢驗。

3.點擊序列x表格上菜單命令:Vie叭UnitRootTest,出現對話框(圖2.6,3)

圖2.6.3可從圖中看一到,默認的檢驗方法為ADF,默認檢驗水平數據(原始數據,

后兩者1st、2nd為1階差分和二階差分數據),默認的檢驗模式為模型2。而

右邊在滯后階數的選取上,默認采用SIC最小。4.將檢驗模型改為模型3,其

余采用默認設定,點OK,出來結果如圖2.6.4:

Augmented(McKeyFuMerunitRootTestonX

NullH^otiesrsXhasaunitroot

ExogenousConstant

LagLengm0(AutomaticbasedonSIC.MAXL*?G=19)

t-StaksttcProb,

AugnientedDlcKey-FulleileslbtdUbVc-218293002128

Testaikcalvalues1%level-3439093

5%-286528g

10%level-2566822

,MadOnnon(1996)one-sidedHues

AugmentedDcKey+uiierlestkquanon

Depec&ntVariableD(X)

MethodLeastSquares

DaleW17/22Time1500

Sample(adiusted)2730

Includedobservations729adjstrnmU

圖2.6.4從結果可以判斷序列x有單位根。大家可以選擇其他模式和滯后期來檢

驗,以形成最終的判斷。檢驗序列X一階差分序列的平穩性:在圖2.6.3所示對

話框中選1stdiferent,檢驗模型為模型2,點OK,得下圖2.6.5

圖2.6.5從結果中可見序列X為一階差分平穩的,故序列x為一階單整的。

03建立ARIMA模型

趨勢圖:plotx或者linex一階差分之后的趨勢圖,顯示數據平穩

DX

先看自相關系數和偏相關系數圖Identx或者宜接點開

1

□Ip.1NTIT_ED::llntitlmd\1。II-II火1

ViewProcObjectPropertiesPrintNameFreezeSampleGenrSheetGraphStatsIdent

CorrelogramofD(X)

Date:08/17/22Time:17:23

Sample:1730

Includedobservations:729

AutocorrelationPartialCorrelationACPACQ-StatProb

1111-0.034-0.0340.84940.357

1'1120.0120.0110.94990.622

-1113-0.039-0.0392.09500.553

(14-0.080-0.0836.80460.147

1)50.0640.0609.83850.080

116-0.098-0.09516.9640.009

1'1170.0170.0C417.1870.016

'I||18-0.038-0.03818.2670.019

i11]90.0650.06621.4080.011

111110-0.016-0.03221.5990.017

1]1]110.0690.08125.1780.009

1111120.006-0.00325.2050.014

1||113-0.060-0.04527.8510.009

1)1||140.0550.04030.0930.007

'111115-0.041-0.01131.3540.008

)11160.0430.02232.7040.008

1'1||170.0170.03332.9110.012

1'1||180.0310.04033.6380.014

11119-0.002-0.01233.6420.020

111120-0.031-0.02134.3790.024

1121-0.005-0.01034.3970.033

-11122-0.039-0.02835.5540.034

1'11230.012-0.00335.6610.045

■1(1124-0.028-0.01236.2680.052

111125-0.017-0.03336.5000.064

1'11260.0250.01836.9890.075

31□270.1350.14150.8970.004

(1c128-0.055-0.07553.2070.003

)1]290.0630.07056.2490.002V

可嘗試AR——46927MA——4627

Isd(x)car(4)ar(6)ar(9)ar(27)ma(4)ma(6)ma(27)

DependentvmabtoD(X)

MefboaLeastSquares

Data08/-1tt22nm?:1022

Sample(aOuotedt29730

todudvdol??NVM*anM702AN

Coiwergenc*acr??v?。atttr105neratjons

MAgcast220

VanatteCocBaerrtStdError.WMcPtob

C00131W002Ml5061931006037

D03605060092431390139900001

AW)-04703260092032-a1104&400000

ARO)00303270025430154692701226

出(27)01931420051502374W7900002

也的0724/0.09bt>*)1bWM2/00000

MS)040$n50095367429$4>500000

MAO7)?00642250045MS-1)99011oie?i

R-squared0054039Meandependentvat00127M

A4USWOR-squared00444WSO3p?nd?ntvar0701904

SEofregression0686110Akaikeirfocriterion2095772

StMn$qu*o(11*13VflftQ7QStliaualtMton7147?M

L09tekahhood?727.6150HavunQumnafltr2115830

FsUks?c560^080DurMn-WatsonsUI289591

PfOD(F-fitaM?C)0000002

分析:F統計量顯示顯著,說明整個模型建立通過,DW值為2.0295,不存在自

相關性了。ar(9)sma:27)不顯著,可以考慮去掉,擬合優度僅0.054,很差,

人1(;值2.09(越小越好)。進一步,檢驗殘差是否為白噪聲序列,若為白噪聲序

列說明信息提取充分,否則需要重新建模。

subftyremCodoyESquaredKfduelg

HiUogrant?riormafityTeU

Ubei

Sen?lCcrre<?bOHIMT?t..

MM)0*>5T3SHetwkM圖困Tests.

-C0M225

RggrX0?M0399M8町00127M

Adiu^edRsquared00444908Cd€<)tndtnfver?70191M

S£of06861103KBmfoeniefion2096772

$51scuMtdrtiid3X6379entwon21476?

U)gkit?8d?26159心MQurmenter21158W

5663680DuSWMsoe俎20A591

ProttiT?,啦"U08毆2

結果如下:

□i=1as

W>wProcObjectPrintNameFreueEsbmat*StatsRodi

~~((MTHnonNnat

DU*08/18J22Tim41029

Sampl929730

lnch>d?d。8”60ns7g

Q-3c?cprobaMt^stor7ARMAtorm(€)

AtMoconeiMonParvolCorreiaaonACPACOStaiProb

14O

13

2-0015W7015M

-0000-0.018M

3<KO2)4

s?00240Ot059G9

0027

562O1?11201

j?:??:43883

66O143

70.0150.O45449

,6

00140.4595?

80O17

0014482330028

9。^0?

0008O487230087

424

1"0?00210W8460159

8霹

M5.910044

v00800l2?/

00049MQ0M1

K)4或

O87

13-0080370025

1400340.4M1w40033

3藍

15<00020KO>0054

10O1515

0032120007

1700020.O150100

Z215993

1800130.O0137

191116123

00190.O3910174

201916黑

00200.M0214

210.O1?

<0003。O<l00273

22O5臼16s

Q(M71B0247

2M309.M37

00460226

4O19等

?OSH)?8700?S3

K4)M^”

■03。2Mu

"0O3/

0006K)0350

9^£

00192121038

28V9要

29-004869<?220360

0.O24

300047-<>.ON60331

。24

31-0028>M3

gO425繪0355

?0031OQ270374

335Z<

乂-00510330

-<>O塔2fl

。4

0035O73144m30337

355a

%0063O篇02S6

0.17

0062O00222

-00.33

00090250

信息的提取并不充分,需要重新建模分析。

Isd(x)ca?4)ar(6)ar(27)ma(4)ma(6)

O|回

ViewProcObjectPrintNa'neFreezeEstimateForecastStatsResids

DependentVariable:D(X)

Method:LeastSquares

Date:08/18/22Time:11:07

Sample(adjusted):29733

Includedobservations:702afteradjustments

Convergenceachievedafter67iterations

MABackcast:2328

VariableCoefficientStd.Errort-StatisticProb.

C0.0130320.0246810.5280010.5977

AR(4)0.3157320.1077802.9294030.0035

AR(6)-0.4538910.109427-4.1478690.0000

AR(27)0.1362560.0321154.2427520.0000

MA(4)-0.4339290.109943-3.9468570.0001

MA(6)0.3885810.1102973.5230460.0005

R-squared0.049563Meandependentvar0.012764

AdjustedR-squared0.042735S.D.dependentvar0.701904

S.E.ofregression0.686742Akaikeinfocriterion2.094795

Sumsquaredresid328.2439Schwarzcriterion2.133717

Loglikelihood-729.2729Hannan-Quinncriter.2.109838

F-statistic7.258956Durbin-Watsonstat2.032869

Prob(F-statistic)0.000001

InvertedARRoots.92.90+.23i90-.23i85+.42i

3S-42i72-57i72+R7i54-72i

ODI回

ViewProcObjectPrintNa-neFreezeEstimateForecastStatsResids

CorrelogramofResiduals

Date:08/18/22Time:11:08

Sample:29730

Includedobservations:702

Q-statisticprobabilitiesadjustedfor5ARMAterm(s)

AutocorrelationPa巾alCorrelationACPACQ-StatProb

'I1111-0.017-0.0170.1943

12-0.004-0.0040.2033

1?I13-0.026-0.0260.6790

I11140.0210.0200.9962

I150.0730.0734.7266

I1116-0.014-0.0124.86210.027

I11170.0140.0155.00100.082

I11180.0060.0105.02580.170

I)190.0500.0476.83030.145

I11110-0.020-0.0227.11000.213

I]1]110.0780.08011.4310.076

111112-0.004-0.00111.4400.121

[1[113-0.066-0.07014.5360.069

1)11140.0440.04115.9380.068

111115-0.025-0.02316.3710.090

1111160.0280.01116.9500.109

1111170.0080.01616.9980.150

1111180.0240.02817.4250.181

?—A———C-A?——A—?v

依然較差。變換模型Isd(x)car(4)ar(6)ar(9)ar(ll)ar(27)ar(28)ar(29)

ma(4)ma(6)ma(ll)ma(27)

DependentVariable:D(X)

Method:LeastSquares

Date:08/18/22Time:11:21

Sample(adjusted):31730

Includedobservations:700afteradjustments

Convergenceachievedafter56iterations

MABackcast:430

VariableCoefficientStd.Errort-StalisticProb.

C0.0139470.0281940.4946740.6210

AR⑷0.4217270.0689616.11MOO0.0000

AR(6)-0.4412600.067856-6.5029070.0000

AR(9)0.0664130.0251552.64C1610.0085

AR(11)-0.1421360.058996-2.40S2570.0162

AR(27)0.3688030.0565716.51S3230.0000

AR(28)-0.0175390.022034-0.79E0160.4263

AR(29)0.0487280.0264431.8427230.0658

MA(4)-0.5493000.070791-7.75S5070.0000

MA(6)0.3691470.0692255.3325450.0000

MA(11)0.1843200.0585073.15C4100.0017

MA(27)-0.2532790.058224-4.35C0660.0000

R-squared0.069196Meandependentvar0.013129

AdjustedR-squared0.054314S.D.dependentvar0.702804

S.E.ofregression0.683452Akaikeinfocriterion2.093673

Sumsquaredresid321.3693Schwarzcriterion2.171692

Loglikelihood-720.7857Hannan-Quinncriter.2.123832

F-statistic4.649626Durbin-Watsonstat2.025204

Prob(F-statistic)0.000001

1-~ACC/人3Ancnc?cc;nccc;

經過反復嘗試,建立以下模型:lsd(x)car(4)ar(5)ar(6)ar(9)ar(11)ar(27)ar(28)

ar(29)ar(32)ma(4)ma(5)ma(6)ma(9)ma(11)ma(14)ma(27)ma(33)ma(34)

oTITLEDWorkfile:時間序列分析及預測案例…。II回次

ViewProcObjectPrintNameFreezeEstimateForecastStatsResids

A

DependentVariable:DQ()

Method:LeastSquares1

Date:08/18/22Time:13:08

Sample(adjusted):34733

Includedobservations:700afteradjustments

Convergenceachievedafter10iterations

MABackcast:033

VariableCoefficientStd.Errort-StatisticProb.

C0.0136300.0271680.5016690.6161

AR(4)-0.0281470.069105-0.4073030.6839

AR(5)-0.0767390.079579-0.9643170.3352

AR(6)-0.1866710.082358-2.2665930.0237

AR(9)0.4739810.0685366958430.0000

AR(11)-0.1269610.085173-1.4906170.1365

AR(27)-0.1962130.074157-2.6459300.0083

AR(28)-0.0386930.033844-1.1432640.2533

AR(29)0.0592430.0358571.6521750.0990

AR(32)-0.0271110.039327-0.6893610.4908

MA(4)-0.0791830.062794-1.2610050.2077

MA(5)0.1542530.0758712.0331010.0424

MA(6)0.1145170.0814001.4068440.1599

MA(9)-0.4659210.064482-7.2255600.0000

MA(11)0.2137020.0759392.8M1400.0050

MA(14)0.0405010.0343481.1791620.2387

MA(27)0.3426760.0694224.9361040.0000

MA(33)-0.1505720.042064-3.5795860.0004

MA(34)0.0638140.0315302.0238850.0434

R-squared0.109122Meandependentvar0.014214

AdjustedR-squared0.085575S.D.dependentvar0.702887

S.E.ofregression0.672140Akaikeinfocriterion2.070067

Sumsquaredresid307.6566Schwarzcriterion2.193596

Loglikelihood-705.5233Hannan-Quinnenter,2.117818

F-statistic4.634158Durbin-Watsonstat2.003860

Prob(F-statistic)0.000000

V

OEquation:UNTITLEDWorkfile:時間戶防吩析例1::Unti.ill回I由^

ViewProcObjectPrintNai)eFreezeEstimateForecastStatsResids

CorrelogramofResiduals

Date:08/18/22Time:13:09A

Sample:34733

Includedobservations:700

Q-statisticprobabilitiesadjustedfor18ARMAterm(s)

AutocorrelationPartialCorrelationACPACQ-StatProb

I1111-0.002-0.0020.0027

11112-0.007-0.0070.0381

11113-0.019-0.0190.2875

111140.0120.0120.3913

11115-0.002-0.0020.3930

111160.0040.0030.4026

111170.0050.0060.4234

11118-0.031-0.0311.0957

11119-0.008-0.0081.1408

111110-0.000-0.0011.1408

1111110.0110.0101.2297

1111120.0080.0081.2706

1111113-0.025-0.0251.7204

1111140.0050.0051.7366

111115-0.003-0.0031.7418

1II1||160.0310.0292.4314

111117-0.000-0.0002.4315

1111180.0100.0092.4987

1111190.0100.0122.56450.109

(11120-0.054-0.0544.68440.096

111121-0.001-0.0024.68540.196

111122-0.012-0.0134.78390.310

1111230.0110.0094.87780.431

111124-0.035-0.0325.76880.450

111125-0.000-0.0005.76890.567

1111260.0030.0035.77500.672

1111270.0100.0095.84410.755

111128-0.005-0.0085.86290.827

1111290.0010.0025.86370.882

111130-0.027

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論