2024屆黑龍江省雞西市雞東縣中考數學模擬試卷含解析_第1頁
2024屆黑龍江省雞西市雞東縣中考數學模擬試卷含解析_第2頁
2024屆黑龍江省雞西市雞東縣中考數學模擬試卷含解析_第3頁
2024屆黑龍江省雞西市雞東縣中考數學模擬試卷含解析_第4頁
2024屆黑龍江省雞西市雞東縣中考數學模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省雞西市雞東縣中考數學模擬精編試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數是()A.4 B.3 C.2 D.12.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形3.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數是()A. B. C. D.4.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.5.若在同一直角坐標系中,正比例函數y=k1x與反比例函數y=的圖象無交點,則有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<06.估算的運算結果應在(

)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間7.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數是()A.26°. B.44°. C.46°. D.72°8.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數y=xA.512B.49C.179.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.410.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.寫出一個大于3且小于4的無理數:___________.12.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉一周.當△DCE一邊與AB平行時,∠ECB的度數為_________________________.13.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結論:①PA=PB;②當OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結論是_____.(把你認為正確結論的序號都填上)14.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.15.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當點B的移動距離為時,四邊ABC1D1為矩形;當點B的移動距離為時,四邊形ABC1D1為菱形.16.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).17.計算:a3÷(﹣a)2=_____.三、解答題(共7小題,滿分69分)18.(10分)數學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數,單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據統計數據繪制了如下兩幅尚不完整的統計圖.補全條形統計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.19.(5分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.20.(8分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.21.(10分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.22.(10分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.23.(12分)在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB,BC分別交于點M,N,求證:BM=CN.24.(14分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據小星同學設計的尺規作圖過程,使用直尺和圓規,補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,FE=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質以及等腰直角三角形的相關性質,中等難度,注意合理的運用特殊值法是解題關鍵.2、C【解析】

根據菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質3、D【解析】

由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.4、D【解析】

根據展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【點睛】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.5、D【解析】當k1,k2同號時,正比例函數y=k1x與反比例函數y=的圖象有交點;當k1,k2異號時,正比例函數y=k1x與反比例函數y=的圖象無交點,即可得當k1k2<0時,正比例函數y=k1x與反比例函數y=的圖象無交點,故選D.6、D【解析】

解:=,∵2<<3,∴在5到6之間.故選D.【點睛】此題主要考查了估算無理數的大小,正確進行計算是解題關鍵.7、A【解析】

先根據正五邊形的性質求出∠EAB的度數,再由平行線的性質即可得出結論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點睛】此題考查平行線的性質,多邊形內角與外角,解題關鍵在于求出∠EAB.8、C【解析】分析:本題可先列出出現的點數的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數除以擲骰子可能出現的點數的總個數即可.解答:解:擲骰子有6×6=36種情況.根據題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.9、B【解析】

此題可根據反比例函數圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數系數k的幾何意義得到k的值.【詳解】根據雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點.10、A【解析】

根據,只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、如等,答案不唯一.【解析】

本題考查無理數的概念.無限不循環小數叫做無理數.介于和之間的無理數有無窮多個,因為,故而9和16都是完全平方數,都是無理數.12、15°、30°、60°、120°、150°、165°【解析】分析:根據CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據每種情況分別進行計算得出答案,每種情況都會出現銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質與判定,屬于中等難度的題型.解決這個問題的關鍵就是根據題意得出圖形,然后分兩種情況得出角的度數.13、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

,∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯誤.

故答案為:①②.【點睛】本題考查了全等三角形的性質和判定,三角形的內角和定理,坐標與圖形性質,正方形的性質的應用,關鍵是推出AM=BN和推出OA+OB=OM+ON14、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.15、,.【解析】試題分析:當點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當點B的移動距離為時,D、B1兩點重合,根據對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為矩形;當四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質.16、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數的性質,點M、N在對稱軸的右側,y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數圖象上點的坐標特征,二次函數的性質,求得對稱軸,掌握二次函數圖象的性質解決問題.17、a【解析】

利用整式的除法運算即可得出答案.【詳解】原式=a=a.【點睛】本題考查的知識點是整式的除法,解題關鍵是先將-a2變成a三、解答題(共7小題,滿分69分)18、576名【解析】試題分析:根據統計圖可以求得本次調查的人數和體重落在B組的人數,從而可以將條形統計圖補充完整,進而可以求得我校初三年級體重介于47kg至53kg的學生大約有多少名.試題解析:本次調查的學生有:32÷16%=200(名),體重在B組的學生有:200﹣16﹣48﹣40﹣32=64(名),補全的條形統計圖如右圖所示,我校初三年級體重介于47kg至53kg的學生大約有:1800×=576(名),答:我校初三年級體重介于47kg至53kg的學生大約有576名.19、(1)見解析;(2)見解析;(3)AB=1【解析】

(1)由垂徑定理得出∠CPB=∠BCD,根據∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據此可得2∠APG=∠F,據此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據勾股定理得,AB=1.【點睛】本題主要考查圓的綜合問題,解題的關鍵是掌握圓周角定理、四點共圓條件、相似三角形的判定與性質、三角函數的應用等知識點.20、﹣6+2【解析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.21、(1);(2)1.【解析】

(1)根據相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比進行計算即可;(2)根據EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據S=x(12﹣x)=﹣(x﹣6)2+1,可得當x=6時,S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當x=6時,S有最大值為1.【點睛】本題主要考查了相似三角形的判定與性質的綜合應用,解題時注意:確定一個二次函數的最值,首先看自變量的取值范圍,當自變量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論