人教B版高一寒假作業(yè)01集合與常用邏輯用語等式與不等式_第1頁
人教B版高一寒假作業(yè)01集合與常用邏輯用語等式與不等式_第2頁
人教B版高一寒假作業(yè)01集合與常用邏輯用語等式與不等式_第3頁
人教B版高一寒假作業(yè)01集合與常用邏輯用語等式與不等式_第4頁
人教B版高一寒假作業(yè)01集合與常用邏輯用語等式與不等式_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教B版高一寒假作業(yè)1:集合與常用邏輯用語、等式與不等式【基礎(chǔ)鞏固】1.(2024·安徽省·期中考試)下列說法正確的是(

)A.高一(2)班個(gè)子較高的同學(xué)能組成集合

B.由a、b、c組成的集合與由b、c、a組成的集合相同

C.由三角形三邊長構(gòu)成的集合有3個(gè)元素

D.小于10的所有整數(shù)組成的集合是有限集2.(2023·福建省·單元測(cè)試)命題“?x0∈?RQA.?x0??RQ,x03∈Q B.?x0?3.(2024·江蘇省無錫市·月考試卷)已知集合A={x|0<x<2},B={x|1<x<a},若B?A,則實(shí)數(shù)a的取值范圍是(

)A.a>2 B.a<2 C.1<a≤2 D.a≤24.(2024·廣東省·月考試卷)杜甫在《奉贈(zèng)韋左丞丈二十二韻》中有詩句:“讀書破萬卷,下筆如有神.”對(duì)此詩句的理解是讀書只有讀透書,博覽群書,這樣落實(shí)到筆下,運(yùn)用起來才有可能得心應(yīng)手,如有神助一般,由此可得,“讀書破萬卷”是“下筆如有神”的(

)A.充分不必要條件 B.充要條件

C.必要不充分條件 D.既不充分也不必要條件5.(多選)(2024·福建省三明市·月考試卷)如圖所示,陰影部分表示的集合是(

)

A.(?UB)∩A B.(?UA)∩B6.(多選)(2024·全國·單元測(cè)試)下列說法不正確的是(

)A.在等式ab=ac兩邊都除以a,可得b=c

B.在等式a=b兩邊都除以c2+1,可得ac2+1=bc2+1

C.在等式ba=7.(多選)(2024·山東省·單元測(cè)試)下列說法中,正確的有(

)A.若a<b<0,則ab>b2

B.若a>b>0,則ba>ab

C.若對(duì)?x∈(0,+∞),x+1x≥m恒成立,則實(shí)數(shù)m的最大值為2

D.若8.若關(guān)于x的不等式組x?1>a2,x?4<2a的解集不是空集,則實(shí)數(shù)a的取值范圍是9.(2024·浙江省金華市·月考試卷)國內(nèi)某地為進(jìn)一步提高城市市花—桂花知名度和美譽(yù)度,促進(jìn)城市品牌的建設(shè)提速強(qiáng)效,相關(guān)部門于近期組織開展“蟾宮折桂,大學(xué)生認(rèn)養(yǎng)古桂花樹”系列活動(dòng),以活動(dòng)為載體,帶動(dòng)桂花產(chǎn)業(yè)、文化、旅游、經(jīng)濟(jì)發(fā)展.著力打造以桂花為主題的城市公共品牌和城市標(biāo)識(shí),力爭通過活動(dòng)和同步的媒體宣傳,實(shí)現(xiàn)從“中國桂花之鄉(xiāng)”到“中國桂花城”的轉(zhuǎn)變.會(huì)上,來自該市的部分重點(diǎn)高中共計(jì)100名優(yōu)秀高中應(yīng)屆畢業(yè)生現(xiàn)場認(rèn)養(yǎng)了古桂花樹,希望他們牢記家鄉(xiāng)養(yǎng)育之恩,不忘桂鄉(xiāng)桑梓之情,積極對(duì)外宣傳推介家鄉(xiāng),傳播桂花文化.這100名學(xué)生在高三的一次語數(shù)外三科競賽中,參加語文競賽的有39人,參加數(shù)學(xué)競賽的有49人,參加外語競賽的有41人,既參加語文競賽又參加數(shù)學(xué)競賽的有15人,既參加數(shù)學(xué)競賽又參加外語競賽的有13人,既參加語文競賽又參加外語競賽的有9人,1人三項(xiàng)都沒有參加,則三項(xiàng)都參加的有

.10.(2024·江蘇省蘇州市·調(diào)研試卷)對(duì)任意x∈1,+∞,當(dāng)且僅當(dāng)n≤x<n+1(n∈N?)時(shí),規(guī)定:[x]=n.則[π]=

.關(guān)于x的不等式【拓展提升】11.(2024·湖北省·聯(lián)考題)已知集合A=x∣3x?5(1)求?R(2)若A∪B=A,求實(shí)數(shù)a取值范圍.12.(2024·江蘇省揚(yáng)州市·月考試卷)(1)已知a,b,x,y∈(0,+∞),且1a>1b,x>y,試比較xx+a與yy+b的大小.

(2)已知a>0,b>0,且(2024·青海省·月考試卷)已知集合A={x|?2≤x≤6},B={x|1?m≤x≤1+m},m>0.請(qǐng)?jiān)冖俪浞謼l件,②必要條件,③充要條件這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題(2)中,若問題(2)中的實(shí)數(shù)m存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

(1)若A∪B=A,求實(shí)數(shù)m的取值范圍;

(2)若x∈A是x∈B的________條件,判斷實(shí)數(shù)m是否存在?14.(2024·江蘇省無錫市·月考試卷)由實(shí)數(shù)組成的集合A具有如下性質(zhì):若a∈A,b∈A且a<b,那么1+ab(1)若集合A恰有兩個(gè)元素,且有一個(gè)元素為43,求集合A(2)是否存在一個(gè)含有元素0的三元素集合A;若存在請(qǐng)求出集合,若不存在,請(qǐng)說明理由.15.(2024·廣東省江門市·月考試卷)一般認(rèn)為,民用住宅的窗戶面積必須小于地板面積,但窗戶面積與地板面積的比應(yīng)不小于10%,而且這個(gè)比值越大,采光效果越好.(1)若一所公寓窗戶面積與地板面積的總和為330m(2)若同時(shí)增加相同的窗戶面積和地板面積,公寓的采光效果是變好了還是變壞了?

1.【答案】B

【解析】【分析】本題主要考查集合的定義和集合中元素的性質(zhì),屬于基礎(chǔ)題.

利用集合的定義和集合中元素的性質(zhì)逐項(xiàng)判斷即可.【解答】

解:A項(xiàng),高個(gè)子不明確,不能說明怎樣才算高個(gè)子,也就不能判斷一位同學(xué)是否為該集合的元素,故錯(cuò)誤;

B項(xiàng),根據(jù)集合的無序性可得B正確;

C項(xiàng),錯(cuò)誤,例如等邊三角形或等腰三角形不滿足三角形三邊長構(gòu)成的集合有3個(gè)元素;

D項(xiàng),小于10的所有整數(shù)有無數(shù)個(gè),故D錯(cuò)誤.

綜上所述,正確的是B.

故選B.2.【答案】D

【解析】【分析】本題考查存在量詞命題的否定,屬于基礎(chǔ)題.

根據(jù)存在量詞命題的否定是全稱量詞命題,結(jié)合選項(xiàng),即可得到答案.【解答】

解:∵命題“?x0∈?RQ,x03∈Q”是存在量詞命題,而存在量詞命題的否定是全稱量詞命題,

∴命題“?x03.【答案】D

【解析】【分析】本題考查集合的包含關(guān)系,屬于基礎(chǔ)題.

根據(jù)題意,分

B=?

B≠?

兩種情況討論,結(jié)合集合的包含關(guān)系,列出不等式組,即可求解.【解答】解:由集合

A={x|0<x<2},B={x|1<x<a}

,且

B?A

,當(dāng)

B=?

時(shí),即

a≤1

時(shí),此時(shí)滿足

B?A

,符合題意;當(dāng)

B≠?

時(shí),要使得

B?A

,則滿足

a>1a≤2

,解得

1<a≤2

綜上可得,實(shí)數(shù)

a

的取值范圍為

(?∞,2]

.故選:D.4.【答案】C

【解析】【分析】本題考查了必要不充分條件的判斷,屬于基礎(chǔ)題.

根據(jù)題意進(jìn)行判斷即可得到答案.【解答】

解:杜甫的詩句表明書讀得越多,文章未必就寫得越好.

但不可否認(rèn)的是,一般寫作較好的人.他的閱讀量一定不會(huì)少.

而且所涉獵的文章范疇也會(huì)比一般讀書人廣泛.

因此“讀書破萬卷”是“下筆如有神”的必要不充分條件.5.【答案】AD

【解析】【分析】本題考查了Venn圖的應(yīng)用,屬基礎(chǔ)題.根據(jù)Venn圖結(jié)合集合的交并補(bǔ)計(jì)算逐項(xiàng)判段即可.【解答】

解:根據(jù)Venn圖可知陰影部分表示A中不含B中元素的部分,

故可得對(duì)應(yīng)的集合可表示為(?UB)∩A,或A∩?U(A∩B),

(?UA)∩B表示的區(qū)域如圖中陰影部分,故可知B錯(cuò)誤;

?U6.【答案】ACD

【解析】【分析】本題考察等式性質(zhì)應(yīng)用,屬于基礎(chǔ)題.

結(jié)合等式性質(zhì)逐個(gè)選項(xiàng)判斷即可.【解答】

解:a=0時(shí),得不到b=c,故A錯(cuò)誤;

c2+1>0,故在等式a=b兩邊都除以c2+1,可得ac2+1=bc2+1,B正確;

在等式ba=ca兩邊都乘以a7.【答案】ACD

【解析】【分析】本題主要考查利用不等式的基本性質(zhì)判斷不等關(guān)系,由基本不等式求最值,利用基本不等式解決恒成立問題,屬于中檔題.

根據(jù)不等式的性質(zhì)可以說明A正確;利用中間值1驗(yàn)證B錯(cuò)誤;利用基本不等式加上恒成立可以說明C正確;巧用“1”可以說明D正確.【解答】解:∵a<b<0,左右兩邊同時(shí)乘以b得ab>b2,故∵a>b>0,∴ab>1,∵x∈(0,+∞),x+1x≥2x?1x=2,當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立,

要使x+1x≥m∵a>0,b>0,a+b=1,

∴1a+1b=(1a+1b)(a+b)

=2+故選ACD.8.【答案】{a|?1<a<3}

【解析】【分析】本題考查空集的概念,知道不等式a<x<b成立時(shí),需滿足:a<b,以及解一元二次不等式.

解出原不等式便可得到a2+1<x<2a+4,由條件知,該不等式有解,從而a需滿足:a2【解答】

解x?1>a2x?4<2a得:

a2+1<x<2a+4;

∵不等式的解集不是空集;

∴a2+1<2a+4;

解得?1<a<3;

∴實(shí)數(shù)a的取值范圍是9.【答案】7人

【解析】【分析】本題考查集合的實(shí)際應(yīng)用,屬于基礎(chǔ)題.

設(shè)三項(xiàng)都參加的有x人,根據(jù)題意列式39+49+41?15?13?9+x=100?1,計(jì)算即可得解.【解答】解:設(shè)三項(xiàng)都參加的有x人,

因?yàn)橛幸蝗巳?xiàng)均未參加,

則由已知39+49+41?15?13?9+x=100?1,解得x=7.

故答案為:7人10.【答案】3;[3,4)

【解析】【分析】本題考查了一元二次不等式的解法和[x]的定義,屬于中檔題.

利用一元二次不等式的解法和[x]的定義即可得出.【解答】

解:由題意可得[π]=3,2[x]2?11[x]+15?0,

可化為(2[x]?5)([x]?3)≤0,

解得:52≤[x]≤3,

∴3≤x<4.

∴不等式2[x]211.【答案】解:(1)由集合A中3x?5x?1≤2,

則x?3x?1≤0,即x?1x?3≤0x≠1,∴?RA=(2)由A∪B=A,則B?A,(i)當(dāng)B=?時(shí),則23a>1(ii)當(dāng)B≠?時(shí),則a≤6,由B?A,

則2∴3綜上,a∈3

【解析】本題考查補(bǔ)集運(yùn)算,含參數(shù)的并集運(yùn)算問題,屬于中檔題.

(1)解不等式得到A=x(2)根據(jù)A∪B=A得到B?A,然后分B=?和B≠?兩種情況討論即可.12.【答案】解:(1)∵a,b∈(0,+∞),且1a>1b,

∴0<a<b,

∴xx+a?yy+b=x(y+b)?y(x+a)(x+a)(y+b)=bx?ay(x+a)(y+b),

又b>a>0,x>y>0,

∴bx>ay,且x+a>0,y+b>0,

∴bx?ay(x+a)(y+b)>0,即xx+a?y【解析】本題考查實(shí)數(shù)的大小比較以及基本不等式的運(yùn)用,考查邏輯推理能力及運(yùn)算求解能力,屬于中檔題.

(1)直接作差,利用不等式的性質(zhì)比較即可;

(2)利用基本不等式直接求證即可.13.【答案】解:(1)若A∪B=A,則B?A,

則m>0,1+m≤6,1?m≥?2,解得0<m≤3,

所以實(shí)數(shù)m的取值范圍是(0,3].

(2)若選擇條件①,即x∈A是x∈B的充分條件,則A?B,

所以1?m≤?2,1+m≥6,解得m≥5,

所以實(shí)數(shù)m的取值范圍是[5,+∞);

若選擇條件②,即x∈A是x∈B的必要條件,則B?A,

所以1?m≥?2,1+m≤6,解得m≤3.

又m>0,所以0<m≤3,

所以實(shí)數(shù)m的取值范圍是(0,3];

若選擇條件③,即x∈A是x∈B的充要條件,則A=B,

所以1?m=?2,1+m=6,方程組無解,【解析】本題考查了集合關(guān)系中的參數(shù)取值問題,充分、必要、充要條件與集合的關(guān)系,屬于中檔題.

(1)由題意知B?A,列出相應(yīng)不等式組,求解即可;

(2)若選擇條件①,則A?B,列出相應(yīng)不等式組,求解即可;

若選擇條件②,則B?A,列出相應(yīng)不等式組,求解即可;

若選擇條件③,則A=B,列出相應(yīng)方程組,求解即可.14.【答案】解:(1)集合A恰有兩個(gè)元素且43∈A.不妨設(shè)集合當(dāng)x<43時(shí),由集合A的性質(zhì)可知,1+3x4∈A解得x=4(舍)或x=49,所以集合當(dāng)x>43時(shí),由集合A的性質(zhì)可知,1+43x∈A解得x=3+576或x=3?576綜上所述:A={4,43}或A={(2)假設(shè)存在一個(gè)含有元素0的三元素集合A={0,a,b},即0∈A,當(dāng)0>a時(shí),則1+a0無意義,當(dāng)0>b時(shí),則所以0<a,0<b,并且1+0a∈A,1+不妨設(shè)集合A={x,0,1},(x>0且x≠1),當(dāng)x>1時(shí),由題意可知,1+1若1+1x=x,即x2?x?1=0,解得x=1+若1+1x=1,則1x=0不成立;若1+當(dāng)0<x<1時(shí),由題意可知,1+x∈A,若1+x=0,則x=?1(舍),若1+x=1,則x=0(舍),若1+x=x,則1=0不成立,綜上所述,集合A是存在的,A={0,1,1+

【解析】本題考查了元素與集合的關(guān)系,集合的性質(zhì),考查了分類討論思想.

(1)根據(jù)題意設(shè)集合A={x,43},然后分類討論x與4(2)假設(shè)存在一個(gè)含有元素0的三元素集合A={0,a,b},根據(jù)集合中元素的性質(zhì)可知,0<a,0<b,進(jìn)一步可知,1∈A,不妨設(shè)集合A={x,0,1},(x>0且x≠1),再根據(jù)集合中元素的性質(zhì)可求得結(jié)果.15.【答案】解:(1)設(shè)地板面積為x,窗戶面積為mx,其中10%≤m<1.又由題得x+mx=330?x=330

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論