




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省大同市靈丘縣2025年高三下學期元月調研考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合(為實數集),,,則()A. B. C. D.2.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格3.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.44.已知向量,(其中為實數),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.6.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.7.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.8.已知集合,將集合的所有元素從小到大一次排列構成一個新數列,則()A.1194 B.1695 C.311 D.10959.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.10.已知函數為奇函數,則()A. B.1 C.2 D.311.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.12.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.設,分別是定義在上的奇函數和偶函數,且,則_________15.數列滿足遞推公式,且,則___________.16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內切圓的圓心的縱坐標為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.18.(12分)已知為等差數列,為等比數列,的前n項和為,滿足,,,.(1)求數列和的通項公式;(2)令,數列的前n項和,求.19.(12分)設等差數列滿足,.(1)求數列的通項公式;(2)求的前項和及使得最小的的值.20.(12分)十八大以來,黨中央提出要在2020年實現全面脫貧,為了實現這一目標,國家對“新農合”(新型農村合作醫療)推出了新政,各級財政提高了對“新農合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農合門診報銷比例醫院類別村衛生室鎮衛生院二甲醫院三甲醫院門診報銷比例60%40%30%20%根據以往的數據統計,李村一個結算年度門診就診人次情況如下:表2:李村一個結算年度門診就診情況統計表醫院類別村衛生室鎮衛生院二甲醫院三甲醫院一個結算年度內各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結算年度每人次到村衛生室、鎮衛生院、二甲醫院、三甲醫院門診平均費用分別為50元、100元、200元、500元.若李村一個結算年度內去門診就診人次為2000人次.(Ⅰ)李村在這個結算年度內去三甲醫院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結算年度內門診就診人次占全村總就診人次的比例視為概率,求李村這個結算年度每人次用于門診實付費用(報銷后個人應承擔部分)的分布列與期望.21.(12分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.22.(10分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數方程是(為參數,常數),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A本題考查了集合交集與補集的混合運算,屬于基礎題.2.D【解析】
先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.3.C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.4.A【解析】
結合向量垂直的坐標表示,將兩個條件相互推導,根據能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.5.D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.6.D【解析】
設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.7.B【解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.8.D【解析】
確定中前35項里兩個數列中的項數,數列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數列的前35項和中,有三項3,9,27,有32項,所以.故選:D.本題考查數列分組求和,掌握等差數列和等比數列前項和公式是解題基礎.解題關鍵是確定數列的前35項中有多少項是中的,又有多少項是中的.9.A【解析】
根據題意,用表示出與,求出的值即可.【詳解】解:根據題意,設,則,又,,,故選:A.本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.10.B【解析】
根據整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數.而為奇函數,為偶函數,所以為偶函數,故,也即,化簡得,所以.故選:B本小題主要考查根據函數的奇偶性求參數值,屬于基礎題.11.D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.12.A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.14.1【解析】
令,結合函數的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數分別是上的奇函數和偶函數,且,令,可得,所以.故答案為:1.本題主要考查了函數奇偶性的應用,其中解答中熟記函數的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15.2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020本題考查數列遞推式和累加法的應用,屬于基礎題16.2【解析】
由題意畫出圖形,設內切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯立①②解得:,又因圓心的縱坐標為,.故答案為:本題考查雙曲線的幾何性質,考查數形結合思想與運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解.【詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題.18.(1),;(2).【解析】
(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數項分一組用裂項相消法求和,偶數項分一組用等比數列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數時,,為偶數時,,∴.本題考查求等差數列和等比數列的通項公式,考查分組求和法及裂項相消法、等差數列與等比數列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數列求和問題,對不是等差數列或等比數列的數列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.19.(1)(2);時,取得最小值【解析】
(1)設等差數列的公差為,由,結合已知,聯立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數列的公差為,由及,得解得數列的通項公式為(2)由(1)知時,取得最小值.本題解題關鍵是掌握等差數列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎題.20.(Ⅰ);(Ⅱ)的發分布列為:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數,即可知道去三甲醫院的總人數,又有60歲所占的百分比可得60歲以上的人數,進而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結算的平均費用及表1所報的百分比可得隨機變量的可能取值,再由概率可得的分布列,進而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結算年度內去門診就診人次為2000人次,分別去村衛生室、鎮衛生院、二甲醫院、三甲醫院人數為,,,,而三甲醫院門診就診的人次中,60歲以上的人次占了,所以去三甲醫院門診就診的人次中,60歲以上的人數為:人,設從去三甲醫院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機變量的可能取值為:,,,,,,,,所以的發分布列為:X2060140400P0.70.10.150.05所以可得期望.本題主要考查互斥事件、隨機事件的概率計算公式、分布列及其數學期望、組合計算公式,考查了推理能力與計算能力,屬于中檔題.21.,;.【解析】
由,公差,有,,成等比數列,所以,解得.進而求出數列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數列,所以,解得.所以數列的通項公式.數列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.本題主要考查等差數列和等比數列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 區塊鏈與教育信息化建設的融合實踐
- 2025至2031年中國臥式金屬帶鋸床行業投資前景及策略咨詢研究報告
- 2025至2030中國谷朊粉行業發展策略及投資建議研究報告版
- 2025內蒙古昆明卷煙有限責任公司應屆高校畢業生招聘77人筆試參考題庫附帶答案詳解
- 2025至2031年中國云臺罩行業投資前景及策略咨詢研究報告
- 現代教育技術應用-全面剖析
- 課題申報書:學校禁煙、反毒品教育研究
- 課題申報書:新時代無黨派代表人士問題研究
- 課題申報書:新時代教研體系建設研究
- 胞漿素在神經退行性疾病中的作用-全面剖析
- 東北抗聯英雄人物智慧樹知到答案章節測試2023年牡丹江師范學院
- GA 1804-2022危險化學品生產企業反恐怖防范要求
- (貴陽專版)中考英語復習 第3部分 中考題型攻略篇 題型7 任務型閱讀(精講)
- 2022年和田地區體育教師招聘筆試試題及答案
- GB/T 3848-2017硬質合金矯頑(磁)力測定方法
- GB/T 11037-2009船用鍋爐及壓力容器強度和密性試驗方法
- GB/T 10228-2015干式電力變壓器技術參數和要求
- 臨邊洞口防護設施安全驗收表
- 2021年北京亦莊國際投資發展有限公司校園招聘筆試試題及答案解析
- 餐飲商戶三關一閉檢查表
- COOK培養箱主要特點參數
評論
0/150
提交評論