




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省玉溪市元江縣一中2025屆高三下學期期初聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知純虛數滿足,其中為虛數單位,則實數等于()A. B.1 C. D.22.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1203.已知數列為等差數列,為其前項和,,則()A. B. C. D.4.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數是()A.3 B.4 C.5 D.65.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.276.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.7.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.8.設不等式組表示的平面區域為,若從圓:的內部隨機選取一點,則取自的概率為()A. B. C. D.9.下列函數中,值域為R且為奇函數的是()A. B. C. D.10.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且11.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為()A. B. C. D.12.的展開式中的系數為()A.-30 B.-40 C.40 D.50二、填空題:本題共4小題,每小題5分,共20分。13.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.14.設集合,,則____________.15.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.16.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(),是的導數.(1)當時,令,為的導數.證明:在區間存在唯一的極小值點;(2)已知函數在上單調遞減,求的取值范圍.18.(12分)已知函數.(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數的取值范圍.19.(12分)已知函數.(1)解不等式;(2)使得,求實數的取值范圍.20.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.21.(12分)在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數方程為(t為參數,α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?2.(10分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先根據復數的除法表示出,然后根據是純虛數求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數,所以,所以.故選:B.【點睛】本題考查復數的除法運算以及根據復數是純虛數求解參數值,難度較易.若復數為純虛數,則有.2、C【解析】
觀察規律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發現規律,根號內分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發現總結各式規律是關鍵,屬于基礎題.3、B【解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.4、B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數.【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數為4次.故選:B.【點睛】本題考查的是求最小推理次數,一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.5、D【解析】
設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.6、A【解析】
首先找出與面所成角,根據所成角所在三角形利用余弦定理求出所成角的余弦值,再根據同角三角函數關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.7、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.8、B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.9、C【解析】
依次判斷函數的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數,排除;B.,值域為,奇函數,排除;C.,值域為,奇函數,滿足;D.,值域為,非奇非偶函數,排除;故選:.【點睛】本題考查了函數的值域和奇偶性,意在考查學生對于函數知識的綜合應用.10、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.11、C【解析】
根據等差數列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數列,設,,.由于,據勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數列的性質,屬于中檔題.12、C【解析】
先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數是展開式中的系數與的系數之和.令,可得的系數為;令,可得的系數為;故的展開式中的系數為.故選:C.【點睛】本題考查二項展開式中某一項系數的求解,關鍵是對通項公式的熟練使用,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
先求出a,b,根據分層抽樣的比例引入正整數k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數量、每層樣本數量的計算,屬于基礎題.14、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.15、10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.16、【解析】
先根據點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數學運算的核心素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)設,,注意到在上單增,再利用零點存在性定理即可解決;(2)函數在上單調遞減,則在恒成立,即在上恒成立,構造函數,求導討論的最值即可.【詳解】(1)由已知,,所以,設,,當時,單調遞增,而,,且在上圖象連續不斷.所以在上有唯一零點,當時,;當時,;∴在單調遞減,在單調遞增,故在區間上存在唯一的極小值點,即在區間上存在唯一的極小值點;(2)設,,,∴在單調遞增,,即,從而,因為函數在上單調遞減,∴在上恒成立,令,∵,∴,在上單調遞減,,當時,,則在上單調遞減,,符合題意.當時,在上單調遞減,所以一定存在,當時,,在上單調遞增,與題意不符,舍去.綜上,的取值范圍是【點睛】本題考查利用導數研究函數的極值點、不等式恒成立問題,在處理恒成立問題時,通常是構造函數,轉化成函數的最值來處理,本題是一道較難的題.18、(1);(2).【解析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據絕對值不等式易求,根據二次函數易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.19、(1);(2)或.【解析】
(1)分段討論得出函數的解析式,再分范圍解不等式,可得解集;(2)先求出函數的最小值,再建立關于的不等式,可求得實數的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數,絕對值不等式的解法,以及關于函數的存在和任意的問題,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關系,再根據線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.21、(1)當時,直線l方程為x=-1;當時,直線l方程為y=(x+1)ta
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商場新品陳列推廣合作協議
- 醫療健康授權委托協議書范本詳盡分析
- 高端企業代持股股權變更合作協議范本
- 生物制品分段生產現場檢查指南
- 商品儲運安全管理制度
- 商超收銀系統管理制度
- 園區公司內部管理制度
- 固體垃圾項目管理制度
- 國開25春《形勢與政策》形考任務大作業參考答案
- 醫院應急預案管理制度
- 國家開放大學2022秋法理學形考1-4參考答案
- 江西檢測收費標準
- BVI公司法全文(英文版)
- 移動基站物業協調方案
- 巖土錨桿技術規程課件
- 風寒感冒及風熱感冒診斷及合理用藥課件
- 第五版PFMEA編制作業指導書
- VDA6.3過程審核檢查表(中英文版)
- DBJ∕T 13-261-2017 福建省二次供水不銹鋼水池(箱)應用技術規程
- 二手車評估作業表簡單實際樣本
- 物資出入庫單模板
評論
0/150
提交評論