福建省龍巖市武平縣第二中學2024-2025學年高三下學期第一次摸底調(diào)研測試數(shù)學試題含解析_第1頁
福建省龍巖市武平縣第二中學2024-2025學年高三下學期第一次摸底調(diào)研測試數(shù)學試題含解析_第2頁
福建省龍巖市武平縣第二中學2024-2025學年高三下學期第一次摸底調(diào)研測試數(shù)學試題含解析_第3頁
福建省龍巖市武平縣第二中學2024-2025學年高三下學期第一次摸底調(diào)研測試數(shù)學試題含解析_第4頁
福建省龍巖市武平縣第二中學2024-2025學年高三下學期第一次摸底調(diào)研測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

福建省龍巖市武平縣第二中學2024-2025學年高三下學期第一次摸底調(diào)研測試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.42.已知向量與的夾角為,,,則()A. B.0 C.0或 D.3.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個4.設i為虛數(shù)單位,若復數(shù),則復數(shù)z等于()A. B. C. D.05.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個新數(shù)列,則()A.1194 B.1695 C.311 D.10956.已知集合,集合,則A. B.或C. D.7.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5788.函數(shù)的圖象的大致形狀是()A. B. C. D.9.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負相關(guān),相關(guān)系數(shù)的值為C.負相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負數(shù)的值為10.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.已知復數(shù),則的虛部為()A. B. C. D.112.已知復數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.14.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.15.已知向量,若向量與共線,則________.16.《九章算術(shù)》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)在平面直角坐標系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.19.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數(shù);⑶試問的值是否與的大小無關(guān),并證明你的結(jié)論.21.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.22.(10分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.2.B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.3.C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.4.B【解析】

根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.本題考查復數(shù)的代數(shù)運算,屬于基礎題.5.D【解析】

確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎.解題關(guān)鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.6.C【解析】

由可得,解得或,所以或,又,所以,故選C.7.D【解析】

因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.本題考查了隨機數(shù)表表的應用,正確掌握隨機數(shù)表法的使用方法是解題的關(guān)鍵.8.B【解析】

根據(jù)函數(shù)奇偶性,可排除D;求得及,由導函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項.【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當時,;又當時,,故在上單調(diào)遞增,所以,綜上,時,,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.9.C【解析】

根據(jù)正負相關(guān)的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關(guān).相關(guān)系數(shù)為負.故選:C.本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負相關(guān)的區(qū)別.掌握正負相關(guān)的定義是解題基礎.10.A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.11.C【解析】

先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復數(shù),所以,所以的虛部為-1.故選:C本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.12.A【解析】

先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A此題考查復數(shù)的基本運算,注意計算的準確度,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.14.【解析】

連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.本題考查直線與圓的位置關(guān)系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.15.【解析】

計算得到,根據(jù)向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.本題考查了根據(jù)向量平行求參數(shù),意在考查學生的計算能力.16.3【解析】

根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)先利用等比數(shù)列的性質(zhì),可分別求出的值,從而可求出數(shù)列的通項公式;(2)利用錯位相減求和法可求出數(shù)列的前項和.【詳解】解:(1)由是遞增等比數(shù)列,,聯(lián)立,解得或,因為數(shù)列是遞增數(shù)列,所以只有符合題意,則,結(jié)合可得,∴數(shù)列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.本題考查了等比數(shù)列的性質(zhì),考查了等比數(shù)列的通項公式,考查了利用錯位相減法求數(shù)列的前項和.18.(1)(2)(2,).【解析】

(1)利用極坐標和直角坐標的轉(zhuǎn)化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標,然后化為極坐標即可.【詳解】(1)∵曲線C的極坐標方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(2,).本題主要考查極坐標和直角坐標的轉(zhuǎn)化及交點的求解,熟記極坐標和直角坐標的轉(zhuǎn)化公式是求解的關(guān)鍵,交點問題一般是統(tǒng)一一種坐標形式求解后再進行轉(zhuǎn)化,側(cè)重考查數(shù)學運算的核心素養(yǎng).19.(1)證明見解析;(2)【解析】

(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項公式.然后利用累加法求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項公式,考查錯位相減求和法,屬于中檔題.20.(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關(guān)試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關(guān)考點:(1)待定系數(shù)求橢圓方程;(2)橢圓簡單的幾何性質(zhì);(3)直線與圓錐曲線21.(1)不是,見解析(2)(3)【解析】

(1)利用遞推關(guān)系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當時,①②兩式對應任意恒成立,所以數(shù)列的通項公式為.本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論