重慶市萬州區分水中學2025屆高二上數學期末質量跟蹤監視模擬試題含解析_第1頁
重慶市萬州區分水中學2025屆高二上數學期末質量跟蹤監視模擬試題含解析_第2頁
重慶市萬州區分水中學2025屆高二上數學期末質量跟蹤監視模擬試題含解析_第3頁
重慶市萬州區分水中學2025屆高二上數學期末質量跟蹤監視模擬試題含解析_第4頁
重慶市萬州區分水中學2025屆高二上數學期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市萬州區分水中學2025屆高二上數學期末質量跟蹤監視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓的位置關系是()A.相切 B.相交C.相離 D.不確定2.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為03.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>04.已知命題,,則A., B.,C., D.,5.已知數列是公差為等差數列,,則()A.1 B.3C.6 D.96.若直線與互相平行,且過點,則直線的方程為()A. B.C. D.7.在長方體中,,,點分別在棱上,,,則()A. B.C. D.8.在等比數列中,,則的公比為()A. B.C. D.9.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.10.拋物線的準線方程是A.x=1 B.x=-1C. D.11.曲線上的點到直線的距離的最小值是()A.3 B.C.2 D.12.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“,”是真命題,則的取值范圍是________14.已知直線和直線垂直,則實數___________.15.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.16.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數在處取得極值確定a的值;若,討論的單調性18.(12分)已知動圓過點,且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點且斜率的直線與圓心的軌跡交于兩點,求線段的長度19.(12分)已知兩定點,,動點與兩定點的斜率之積為(1)求動點M的軌跡方程;(2)設(1)中所求曲線為C,若斜率為的直線l過點,且與C交于P,Q兩點.問:在x軸上是否存在一點T,使得對任意且,都有(其中,分別表示,的面積).若存在,請求出點T的坐標;若不存在,請說明理由20.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(1)求證:平面;(2)在線段上是否存在一點,使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由21.(12分)設數列的前項和為,且.(1)求數列的通項公式;(2)記,求數列的前項和為.22.(10分)2021年2月12日,辛丑牛年大年初一,由賈玲導演的電影《你好,李煥英》上映,截至到2月21日22點8分,票房攀升至40.25億,反超同期上映的《唐人街探案3》,迎來了2021春節檔最具戲劇性的一幕.正是因為影片中母女間的這份簡單、純粹、誠摯的情感觸碰了人們內心柔軟的地方,打動了萬千觀眾,才贏得了良好的口碑,不少觀眾都流下了感動的淚水.影片結束后,某電影院工作人員當日隨機抽查了100名觀看《你好,煥英》的觀眾,詢問他們在觀看影片的過程中是否“流淚”,得到以下表格:男性觀眾女性觀眾合計流淚20沒有流淚520合計(1)完成表格中的數據,并判斷是否有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關?(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,然后從這5人中再隨機抽取2人,求這2人都流淚的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直線恒過定點,而此點在圓的內部,故可得直線與圓的位置關系.【詳解】直線恒過定點,而,故點在圓的內部,故直線與圓的位置關系為相交,故選:B.2、D【解析】把要證的結論否定之后,即得所求的反設【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設正確的是a,b全為0.故選:D3、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B4、A【解析】根據全稱命題與特稱命題互為否定的關系,即可求解,得到答案【詳解】由題意,根據全稱命題與特稱命題的關系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題5、D【解析】結合等差數列的通項公式求得.【詳解】設公差,.故選:D6、D【解析】由題意設直線的方程為,然后將點代入直線中,可求出的值,從而可得直線的方程【詳解】因為直線與互相平行,所以設直線的方程為,因為直線過點,所以,得,所以直線的方程為,故選:D7、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質可得,又,所以,因為,所以,所以,因為,所以;故選:D8、D【解析】利用等比數列的性質把方程都變成和有關的式子后進行求解.【詳解】由等比數列的等比中項性質可得,又,所以,因,所以,所以,故選:D.9、A【解析】由題設及橢圓方程可得,即可求參數a的值.【詳解】由題設易知:橢圓參數,即有,可得故選:A10、C【解析】先把拋物線方程整理成標準方程,進而求得p,再根據拋物線性質得出準線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標準方程和簡單性質.屬基礎題11、D【解析】求出函數的導函數,設切點為,依題意即過切點的切線恰好與直線平行,此時切點到直線的距離最小,求出切點坐標,再利用點到直線的距離公式計算可得;【詳解】解:因為,所以,設切點為,則,解得,所以切點為,點到直線的距離,所以曲線上的點到直線的距離的最小值是;故選:D12、C【解析】由已知條件計算可得,即得到結果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構造函數利用函數的單調性計算可得.【詳解】,等價于在上有解設,,則在上單調遞減,在上單調遞增,又,,所以,即故答案為:14、【解析】根據兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.15、①②【解析】假設與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.16、【解析】先利用勾股定理得出滿足條件的長度,再結合幾何概型的概率公式得出答案.【詳解】設,當時,,;當時,,所以當到的距離都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)在和內為減函數,在和內為增函數【解析】(1)對求導得,因為在處取得極值,所以,即,解得;(2)由(1)得,,故,令,解得或,當時,,故為減函數,當時,,故為增函數,當時,,故為減函數,當時,,故為增函數,綜上所知:和是函數單調減區間,和是函數的單調增區間.18、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯立方程組,求出弦長.【詳解】解:(1)圓過點,且與直線相切點到直線的距離等于由拋物線定義可知點的軌跡是以為焦點、以為準線的拋物線,依題意,設點的軌跡方程為,則,解得,所以,動圓圓心的軌跡方程是(2)依題意可知直線,設聯立,得,則,所以,線段的長度為【點睛】(1)待定系數法、代入法可以求二次曲線的標準方程;(2)“設而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.19、(1)(2)存在;【解析】(1)設出點的坐標,根據,即可直接求出動點M的軌跡方程;(2)根據題意寫出直線的方程,把直線的方程與曲線的方程聯立,消元,寫韋達;根據條件,同時結合三角形的面積公式可得出;從而結合韋達定理可求出點T的坐標.【小問1詳解】設,由,得,即,所以動點M的軌跡方程為.【小問2詳解】設PT與RT夾角為,QT與RT夾角為,因為,所以,即,所以,設,,,直線l的方程為,因為,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在點,使得對任意且,都有.20、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設,求出,結合已知條件可列出關于的方程,從而可求出的值.【詳解】證明:過作于點,則,以為原點,,,所在的直線分別為,,軸建立如圖所示的空間直角坐標系則,,,

,,,∵為的中點.∴.則,,,設平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設,∴.∴,∴

.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡得,即,∵,∴,故【點睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.21、(1);(2).【解析】(1)利用可求得結果;(2)由(1)可得,利用裂項相消法可求得結果.【小問1詳解】當時,;當時,,;經檢驗:滿足;綜上所述:.【小問2詳解】由(1)得:,.22、(1)填表見解析;有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關;(2)【解析】(1)由已知數據可完善列聯表,然后計算可得結論;(2)根據分層抽樣定義求出5人中流淚與沒有流淚的觀眾人數并編號,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論