上海市閔行區2023-2024學年中考聯考數學試卷含解析_第1頁
上海市閔行區2023-2024學年中考聯考數學試卷含解析_第2頁
上海市閔行區2023-2024學年中考聯考數學試卷含解析_第3頁
上海市閔行區2023-2024學年中考聯考數學試卷含解析_第4頁
上海市閔行區2023-2024學年中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市閔行區2023-2024學年中考聯考數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)2.弘揚社會主義核心價值觀,推動文明城市建設.根據“文明創建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結果如下表:人數2341分數80859095則得分的眾數和中位數分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.53.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°4.下列方程中有實數解的是()A.x4+16=0 B.x2﹣x+1=0C. D.5.今年3月5日,十三屆全國人大一次會議在人民大會堂開幕,會議聽取了國務院總理李克強關于政府工作的報告,其中表示,五年來,人民生活持續改善,脫貧攻堅取得決定性進展,貧困人口減少6800多萬,易地扶貧搬遷830萬人,貧困發生率由10.2%下降到3.1%,將830萬用科學記數法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×1076.若代數式有意義,則實數x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠37.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.28.已知二次函數的圖象如圖所示,則下列結論:①ac>0;②a-b+c<0;

當時,;,其中錯誤的結論有A.②③ B.②④ C.①③ D.①④9.計算的值為()A. B.-4 C. D.-210.《九章算術》是中國古代數學的重要著作,方程術是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩。問:每頭牛、每只羊各值金多少兩?”設每頭牛值金x兩,每只羊值金y兩,則列方程組錯誤的是()A. B. C. D.11.二次函數y=ax2+bx+c(a≠0)的圖象如圖,下列結論正確的是()A.a<0 B.b2-4ac<0 C.當-1<x<3時,y>0 D.-=112.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數為()A.144° B.84° C.74° D.54°14.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.15.某籃球架的側面示意圖如圖所示,現測得如下數據:底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側,與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結果保留一位小數,參考數據:sin53°≈,cos53°≈,tan53°≈).16.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發現它的東南方向有一燈塔B,貨輪繼續向東航行30分鐘后到達C處,發現燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.17.從一副54張的撲克牌中隨機抽取一張,它是K的概率為_____.18.計算_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.20.(6分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.21.(6分)在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.22.(8分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.23.(8分)已知二次函數y=a(x+m)2的頂點坐標為(﹣1,0),且過點A(﹣2,﹣).(1)求這個二次函數的解析式;(2)點B(2,﹣2)在這個函數圖象上嗎?(3)你能通過左,右平移函數圖象,使它過點B嗎?若能,請寫出平移方案.24.(10分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.25.(10分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結果保留整數)(參考數據:sin35°=0.57,cos35°=0.82,tan35°=0.70)26.(12分)解方程.27.(12分)我們常用的數是十進制數,如,數要用10個數碼(又叫數字):0、1、2、3、4、5、6、7、8、9,在電子計算機中用的二進制,只要兩個數碼:0和1,如二進制中等于十進制的數6,等于十進制的數53.那么二進制中的數101011等于十進制中的哪個數?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A2、A【解析】找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,可得答案.解:在這一組數據中90是出現次數最多的,故眾數是90;排序后處于中間位置的那個數,那么由中位數的定義可知,這組數據的中位數是87.5;故選:A.“點睛”本題考查了眾數、中位數的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數:將一組數據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.3、B【解析】

先由平行線性質得出∠ACD與∠BAC互補,并根據已知∠ACD=40°計算出∠BAC的度數,再根據角平分線性質求出∠BAE的度數,進而得到∠DEA的度數.【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內角互補.4、C【解析】

A、B是一元二次方程可以根據其判別式判斷其根的情況;C是無理方程,容易看出沒有實數根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.5、C【解析】

科學記數法,是指把一個大于10(或者小于1)的整數記為a×10n的形式(其中1≤|a|<10|)的記數法.【詳解】830萬=8300000=8.3×106.故選C【點睛】本題考核知識點:科學記數法.解題關鍵點:理解科學記數法的意義.6、D【解析】分析:根據分式有意義的條件進行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.7、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內的綜合問題,解題的關鍵是熟知垂徑定理、圓周角定理及勾股定理.8、C【解析】

①根據圖象的開口方向,可得a的范圍,根據圖象與y軸的交點,可得c的范圍,根據有理數的乘法,可得答案;

②根據自變量為-1時函數值,可得答案;

③根據觀察函數圖象的縱坐標,可得答案;

④根據對稱軸,整理可得答案.【詳解】圖象開口向下,得a<0,

圖象與y軸的交點在x軸的上方,得c>0,ac<,故①錯誤;

②由圖象,得x=-1時,y<0,即a-b+c<0,故②正確;

③由圖象,得

圖象與y軸的交點在x軸的上方,即當x<0時,y有大于零的部分,故③錯誤;

④由對稱軸,得x=-=1,解得b=-2a,

2a+b=0

故④正確;

故選D.【點睛】考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.9、C【解析】

根據二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.10、D【解析】

由5頭牛、2只羊,值金10兩可得:5x+2y=10,由2頭牛、5只羊,值金8兩可得2x+5y=8,則7頭牛、7只羊,值金18兩,據此可知7x+7y=18,據此可得答案.【詳解】解:設每頭牛值金x兩,每只羊值金y兩,

由5頭牛、2只羊,值金10兩可得:5x+2y=10,

由2頭牛、5只羊,值金8兩可得2x+5y=8,

則7頭牛、7只羊,值金18兩,據此可知7x+7y=18,

所以方程組錯誤,

故選:D.【點睛】本題主要考查由實際問題抽象出二元一次方程組,解題的關鍵是理解題意找到相等關系及等式的基本性質.11、D【解析】試題分析:根據二次函數的圖象和性質進行判斷即可.解:∵拋物線開口向上,∴∴A選項錯誤,∵拋物線與x軸有兩個交點,∴∴B選項錯誤,由圖象可知,當-1<x<3時,y<0∴C選項錯誤,由拋物線的軸對稱性及與x軸的兩個交點分別為(-1,0)和(3,0)可知對稱軸為即-=1,∴D選項正確,故選D.12、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再再根據EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、B【解析】正五邊形的內角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.14、【解析】

設該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關鍵.15、1.1.【解析】

過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.【點睛】本題考查了相似三角形的性質與應用,解題的關鍵是熟練的掌握相似三角形的性質與應用.16、1【解析】

作CE⊥AB于E,根據題意求出AC的長,根據正弦的定義求出CE,根據三角形的外角的性質求出∠B的度數,根據正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數的定義是解題的關鍵.17、【解析】

根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.【詳解】一副撲克牌共有54張,其中只有4張K,∴從一副撲克牌中隨機抽出一張牌,得到K的概率是=,故答案為:.【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.18、【解析】

根據同底數冪的乘法法則計算即可.【詳解】故答案是:【點睛】本題考查了同底數冪的乘法,熟練掌握同底數冪的乘法運算法則是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質,求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質、菱形的性質、弧長公式等知識,準確添加輔助線、靈活應用相關知識解決問題是關鍵.20、證明見解析【解析】試題分析:(1)根據已知求得∠BDF=∠BCD,再根據∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.21、(1)(2)見解析;(3)P(0,2).【解析】分析:(1)根據A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關于x軸的對稱點,依次連接即可.(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應用.22、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質,等邊三角形的性質等知識,熟練掌握和靈活運用相關知識是解題的關鍵.23、(1)y=﹣(x+1)1;(1)點B(1,﹣1)不在這個函數的圖象上;(3)拋物線向左平移1個單位或平移5個單位函數,即可過點B;【解析】

(1)根據待定系數法即可得出二次函數的解析式;(1)代入B(1,-1)即可判斷;(3)根據題意設平移后的解析式為y=-(x+1+m)1,代入B的坐標,求得m的植即可.【詳解】解:(1)∵二次函數y=a(x+m)1的頂點坐標為(﹣1,0),∴m=1,∴二次函數y=a(x+1)1,把點A(﹣1,﹣)代入得a=﹣,則拋物線的解析式為:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,點B(1,﹣1)不在這個函數的圖象上;(3)根據題意設平移后的解析式為y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以拋物線向左平移1個單位或平移5個單位函數,即可過點B.【點睛】本題考查了待定系數法求二次函數的解析式,二次函數圖象上點的坐標特征,二次函數的性質以及圖象與幾何變換.24、(1)詳見解析;(2)【解析】

(1)根據正方形的性質和等腰直角三角形的性質以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論