




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ITUPublicationsInternationalTelecommunicationUnion
TelecommunicationStandardizationSector
CrowdsourcingAIand
MachineLearningsolutionsforSDGs
ITUAI/MLChallenges2024Report
ITU
Disclaimer
ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofITUconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
ThementionofspecificcompaniesorcertainmanufacturerproductsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted,thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.
AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.
Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.
ISBN
978-92-61-39451-6(Electronicversion)978-92-61-39461-5(EPUBversion)
978-92-61-39471-4(Mobiversion)
Pleaseconsidertheenvironmentbeforeprintingthisreport.
?ITU2024
Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).
Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit
/
licenses/by-nc-sa/3.0/igo/
CrowdsourcingAIandMachineLearningsolutionsforSDGs
ITUAI/MLChallenges2024Report
ITU
Foreword
i
TheITUArtificialIntelligenceandMachineLearning(AI/ML)ChallengesarecompetitionswhereanyonecanparticipatetosolveproblemstatementstoadvancetheachievementofSustainableDevelopmentGoals(SDGs)usingAI/ML.Thecompetitionsenableparticipantstoconnectwithnewpartners–andnewtoolsanddataresources–toachievegoalssetoutbyproblemstatementscontributedbyindustryandacademia.
Iampleasedtosaythatthesecompetitionshavewelcomedover8,000participantssincetheirlaunchin2020.
ThecompetitionsstimulateglobalaccesstoAI/MLexpertiseandcapabilitiesandempowerparticipantstocreate,train,and
deployMLmodelsbyofferingcuratedproblemstatements,data,technicalwebinars,mentoring,andhands-ontrainingsessions.Thisenhancesparticipants'skillsandglobalrecognitionandalsosupportsamoreinclusiveITUstandardizationprocessbypavingthewayforparticipantstomakevaluablecontributionstoITU'sspecifications.
Morethan70percentoftheparticipantsin2023werestudents,withalargemajorityfromtheAfricanregion.
Tosharetheoutcomeswiththelargercommunity,solutionssubmittedaresharedasopensourceinseveralrepositoriesontheChallengeGitHub:
/ITU-AI-ML-in-5G
-Challenge
.
Thisreporthighlightstheimportantworkofteamsacrosstheglobe.ItfeatureswinningsolutionsthataretheresultofinnovativeapproachestosolvingproblemswithapplicationsofAIacrossseveraldomains.
SeizoOnoe
DirectorITUTelecommunicationStandardizationBureau
i
Tableofcontents
Foreword
ii
Acronyms
vi
1ExecutiveSummary
1
2Introduction
3
3DomainsandAreasofCompetition
5
3.1AI/MLin5Gand6G(CommunicationNetworks)
5
3.2GeospatialArtificialIntelligence
6
3.3tinyML
6
3.4AIforClimateAction
7
3.5FusionEnergy
7
4Participation
8
4.1MotivationtoParticipate
8
4.2Statistics
9
4.3ChallengePhases/Timeline
11
5Problemstatements
13
6Winningsolutions
15
6.1AI/MLfor5G-EnergyConsumptionModelling
15
6.2Build-a-thon
16
6.3GraphNeuralNetworks(GNN)
16
6.4SmartWeatherStation
17
7Incentives
18
7.1Prizes
18
7.2Certificates
18
8Webinars
20
9Capacitybuilding
21
9.1TechnicalWebinars
21
9.2Hands-OnWorkshops
21
9.3MentoringSessions
21
9.4Round-TableDiscussions
21
iii
9.5OnlineLearningResources
22
9.6CertificationandRecognition
22
10Intellectualpropertyrights
23
11ChallengeSolutionContributions
24
11.1Standards
24
11.2OpenSource
24
11.3JournalandConferencePublications
24
11.4Ecosystemcreation
26
12Judgingthesubmissions
28
12.1Commonoutputformat
28
12.2Additionaloutputforopen-sourcecode
28
12.3Additionaloutputforproprietarycode
28
12.4EvaluationCriteria
28
13Resources
30
14Benefits
31
14.1Benefitsforpartnersandcollaborators
31
14.2BenefitsforParticipants
31
14.3SpecialBenefitsforCertainSponsorCategories
31
15Impact
32
15.1AdvancingTechnologicalInnovation
32
15.2PromotingGlobalCollaboration
32
15.3EnhancingPracticalSkills
32
15.4ContributingtoStandardsDevelopment
32
15.5AddressingSDGs
32
15.6RecognizingandRewardingExcellence
32
15.7BuildingaThrivingEcosystem
33
15.8ShowcasingandDisseminatingResearch
33
16Testimonials
34
17Conclusion
35
Annex1:Data
36
Annex2:ProblemStatementSample
38
Annex3:DataSharingGuidelines
39
iv
Annex4:HostOnboardingGuidelines
44
Listoffiguresandtables
Figures
Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020
-2023
3
Figure2:Distributionofparticipantsforthechallenge
3
Figure3:VariousdomainscoveredintheITUAI/MLChallenge
4
Figure4:Motivationtoparticipateinthechallenge
8
Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020
9
Figure6:CombinedGrowthoftheChallengebyType
9
Figure7:Participationandtotal#submissionsfor2023invariousdomainsof
theITUAI/MLChallenges
11
Figure8:ParticipantsGenderDistribution
11
Figure9:2023ITUAI/MLChallengeTimeline
12
Figure10:SampleChallengeproblemstatements
13
Figure11:WinnerannouncementofAI/MLfor5G-EnergyConsumption
ModellingchallengeatCOP28inDubai
15
Figure12:2ndGNNetWorkshop
17
Figure13:Aurorasmartweatherstation
17
Figure14:WinnerCertificates
19
Figure15:TheML5Gwebinarseriesin2020
20
Figure16:Thecallforpaperforthespecialissueofthepeer-reviewedITU
JournalforFutureandEvolvingTechnologies
25
Figure17:Ecosystem
26
Figure18:2024ChallengeannouncementinShanghaiduringtheAIfor
GoodInnovateforImpactatWorldAIconference
27
Figure19:TestimonialsfromChallengeorganizersandparticipants
34
Figure20:Guidelines
42
Tables
Table1:CompetitionDetails
10
Table2:ProblemStatementSample
38
Table3:DataClassificationCategories
39
v
Acronyms
ACM
AssociationforComputingMachinery
AI
ArtificialIntelligence
CSV
Comma-separatedValue
FGAN
FocusGroupAutonomousNetworks
GNN
GraphNeuralNetworks
IEEE
InstituteofElectricalandElectronicsEngineers
IPR
IntellectualPropertyRights
ITUJ-FET
InternationalTelecommunicationUnionJournalonFutureandEvolvingTechnologies
ML
MachineLearning
NDA
Non-disclosureAgreement
PoC
ProofofConcept
RRM
RadioResourceManagement
SDG
SustainableDevelopmentGoal
SG
StudyGroup
TSB
TelecommunicationStandardizationBureau
vi
CrowdsourcingAIandMachineLearningsolutionsforSDGs
1ExecutiveSummary
ArtificialIntelligence(AI)isadominanttechnologyandimpactseveryaspectofsociety.AsAIcontinuestoevolve,AI/ML-enabledapplicationsandservicesintegratedwiththefutureofcommunicationnetworkswoulddriveinnovationandrelatedstandards.ITUisattheforefrontofexploringhowbesttoapplyAI/MLthroughvariousinitiativesandprojectstoadvancetheachievementofsustainabledevelopmentgoals(SDGs).ITUAI/MLcompetitions,bringtogetherAI/MLstakeholderstobrainstorm,innovateandsolverelevantproblemsintelecommunicationnetworks,Geospatialchallenges,tinyMLusecases,etc.Buildingonitsstandardscommunity,ITUhasbeenconductingglobalITUAI/MLChallengesmappedtoseveralareasimpactingSDGs.
TheITUAI/MLin5GChallengeaimstosolvereal-worldcommunicationnetworkproblemsusingAIandML,focusingonthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Participantsengageintechnicalwebinars,mentoring,andhands-onsessions,creatinganddeployingMLmodels,andapplyingITUstandards,therebygainingglobalrecognitionfortheirinnovativesolutions.
TheGeoAIChallengeappliesAI/MLtoaddressreal-worldgeospatialproblemsrelatedtotheUNSDGs.Participantsgainpracticalexperiencebytacklingissuessuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse,promotinginnovativesolutionsforsustainabledevelopment,andofferingprizes,recognition,andcertificatestotopperformers.
ThetinyMLChallengeexploresapplyingmachinelearningtotinydevicesandembeddedsystemstobuildcost-effective,low-power,reliable,andeasy-to-install,solutionsbyleveragingtinyMLtechnology.
TheITUAI/MLChallengeofferscarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.TeamsparticipatingintheChallengeenable,create,train,anddeployMLmodelsfordifferentdomains.Thisenablesparticipantstonotonlyshowcasetheirtalent,testtheirconceptsonrealdataandreal-worldproblems,andcompeteforglobalrecognitionincludingprizemoneyandcertificates,butalsoentertheworldofITUstandardsbymappingtheirsolutionstoourspecifications.
TheITUAI/MLChallengehashadprofoundimpactsacrossmultipledimensions.
1
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Standards:ThechallengehasfacilitatedtheintegrationofinnovativeAI/MLsolutionsintoITUspecifications,ensuringnewtechnologiesarestandardizedandwidelyadopted.
Research:Thechallengehasspurredcutting-edgeinvestigationsandpracticalapplications,leadingtonumerouspublicationsinjournalsandconferences.
Communitybuilding:ThechallengehasalsofosteredavibrantcommunityofAI/MLpractitioners,withmembersfromdiversebackgroundsandover100countries,creatingaglobalnetworkofcollaboratorsandinnovators.
Capacitybuilding:Thechallengehasprovidedparticipantswithinvaluableskillsthroughtechnicalwebinars,hands-onworkshops,andmentoringsessions,enhancingtheirabilitytotacklereal-worldproblems.
Overall,theITUAI/MLChallengehassignificantlycontributedtotechnologicaladvancement,globalcollaboration,andthedevelopmentofarobustecosystemthatdrivesprogressinAI/MLandcommunicationnetworks.
2
CrowdsourcingAIandMachineLearningsolutionsforSDGs
2Introduction
TheITUAI/MLChallengewaslaunchedin2020.Thefirsteditionranonthetheme“HowtoapplyITU’sMLarchitecturein5Gnetworks”andappliedtothecommunicationnetworksdomain(ITUAI/MLin5GChallenge).ITUisattheforefrontofleveragingAI/MLtoachieveSDGs.Throughavarietyofactivitiesandprojects,ITUbringstogethermultiplestakeholderstobrainstorm,innovate,andsolverelevantproblemsacrossdifferentdomains.TheITUAI/MLChallengeisoneofthekeyinitiativesaimedatfosteringglobalcollaborationandinnovationintheapplicationofAI/MLtoSDGswithanemphasisoncommunicationnetworks.ThischallengehasbeeninstrumentalinexploringhowAIcanbeappliedto5G,geospatialtechnologies,tinyML,andotherareastodriveprogresstowardstheSDGs.
Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020-2023
Theboundariesandnamesshown,andthedesignationsusedonthismapdonotimplyofficialendorsementoracceptancebytheUnitedNations/ITU.
Note:participantsfrommorethan100countries/regionsparticipatedintheChallenge.Thetopfourcountriesareasfollows:India,UnitedStates,ChinaandNigeria.
Figure2:Distributionofparticipantsforthechallenge
Note:morethan57%ofparticipantsareprofessionalsandaround38%arestudents.
3
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thechallengeconnectsparticipantsfromover100countries,includingstudents,professionals,industryexperts,andacademia,tosolvereal-worldproblemsusingAI/ML.Thecompetitionsoffercarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.Participantscreate,train,anddeployMLmodels,enablingthemtoshowcasetheirtalent,testtheirconceptsonrealdata,andcompeteforglobalrecognition,includingprizemoneyandcertificates.ThisinitiativealsoprovidesagatewaytotheworldofITUstandards,asparticipantsmaptheirsolutionstoITUspecifications.
ThedomainscoveredintheITUAI/MLChallengeincludeAI/MLin5Gand6G(orcommunicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskillsandgainhands-onexperienceinaddressingcriticalissues.TheAI/MLin5GChallengefocusesontheapplicationofAI/MLincommunicationnetworks,optimizingthedevelopmentandperformanceof5Gand6Gtechnologies.TheGeoAIChallengeaddressesgeospatialproblemsrelatedtotheUNSDGs.ThetinyMLChallengeexplorestheapplicationofMLintinydevicesandembeddedsystems.TheAIforClimateActionInnovationFactoryaimstodevelopAIsolutionsforcombatingclimatechange,whiletheFusionChallengefocusesonusingMLforpredictivemodelinginfusionenergysystems.Throughthesediversedomains,theITUAI/MLChallengecontinuestodriveinnovationandcollaboration,contributingtotheadvancementofglobalstandardsandthedevelopmentofimpactfulsolutions.
Figure3:VariousdomainscoveredintheITUAI/MLChallenge
The2023ITUAI/MLChallengesawmorethan3300participantsfrom100+countriesinthechallenge.Theseparticipantscontributedover20'000submissionsandreceived56'267CHFinprizemoneyfromITUandsponsors.Detailedstatisticsofthechallengecanbefoundinsection4.2.
4
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3DomainsandAreasofCompetition
Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thesecompetitionsarerunannually,witheacheditionintroducingnewthemesandexpandingthescopeofthechallenge.ThecompetitionshaveincludedAI/MLin5Gand6G(i.e.communicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskills,gainhands-onexperience,andcontributetosolvingpressingglobalissues.
3.1AI/MLin5Gand6G(CommunicationNetworks)
Applyingmachinelearningin
communicationnetworks
TheITU
AI/MLin5GChallenge
rallieslike-mindedstudentsandprofessionalsfromaroundtheglobetosolvereal-worldproblemsincommunicationnetworksbyapplyingAIandmachinelearning(ML).TheAI/MLin5GChallenge,launchedasthefirsteditionin2020,hasbecomeacornerstoneoftheITUAI/MLChallenge.ThiscompetitionfocusesonapplyingAI/MLincommunicationnetworks,particularlyinthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Astelecommunicationnetworksevolvetowards6G,AIisexpectedtobeintegraltothenetwork’sdesign,enablingadvancedfeatureslikeAI-nativeinfrastructure,pervasiveintelligence,andreal-timeresponsiveness.
ITUAI/MLin5GChallengeanalysespracticalproblemsinnetworksusingrealandsimulateddata.Asweaimforenhancedefficiency,reliability,andrichuserexperienceusingAI/MLincommunicationnetworks,ITUcallsfortheapplicationofitspre-standardandstandardconceptsinnetworkmanagement,security,optimization,andbeyondtosolvereal-worldproblems.IntheITUAI/MLin5GChallenge,participantsfromvariousbackgroundscollaboratetosolvereal-worldproblemsusingAI/ML,workingoncuratedproblemstatementswithaccesstoamixofreal-worldandsimulateddata.Thechallengeincludestechnicalwebinars,mentoring,andhands-onsessions,enablingparticipantstocreate,train,anddeployMLmodelsforcommunicationnetworks.ThecompetitionnotonlyshowcasestalentandinnovativesolutionsbutalsoprovidesapathwayforparticipantstoengagewithITUstandardsandgainglobalrecognition.
5
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3.2GeospatialArtificialIntelligence
ApplyingMachineLearningtoGeospatialAnalysis
The
GeospatialArtificialIntelligenceChallenge
(GeoAI),nowenteringitsthirdeditionin2024,addressesreal-worldgeospatialproblemsbyapplyingAI/ML.ThiscompetitionaimstosolveissuesrelatedtotheUNSDGsusingreal-worlddata.ParticipantsgainpracticalexperienceinapplyingAI/MLtogeospatialdata,tacklingproblemssuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse.Thechallengepromotesinnovativesolutionsthatcontributetosustainabledevelopment,offeringprizes,recognition,andcertificatestothetopperformers.
3.3tinyML
ApplyingMachineLearningtoEdgeDevices
The
tinyMLChallenge
,organizedincollaborationwithindustrypartners,explorestheapplicationofmachinelearninginthedomainoftinydevicesandembeddedsystems.Thesecondeditionofthischallengein2023focusedondevelopingaNext-GentinyMLSmartWeatherStationthatiscost-effective,low-power,reliable,andeasytoinstallandmaintain.Thisweatherstationwillmeasurevariousweatherconditions,particularlyrainandwind,usingtinyMLtechnology.Additionally,thetinyMLChallengeincludesprojectsonscalableandhigh-performancesolutionsforcropdiseasedetectionandwildlifemonitoring.Thiscompetitionencouragesinnovationinenvironmentalmonitoringandagriculture,leveragingthecapabilitiesoftinyML.
6
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3.4AIforClimateAction
AnacceleratorplatformforAI-poweredclimatechangesolutionsfromstart-ups
Climatechangeisasignificantglobalchallengewithfar-reachingimpacts.The
AIforClimateAction
InnovationFactory
,launchedattheAIforGoodSummitin2024,seekstoadvancetheuseofAIincombatingclimatechange.ThisinitiativebuildsonprevioussuccessesandfocusesondevelopingAIsolutionsthataddressclimate-relatedissues.The2024editionaimstoshowcasethesesolutionsatCOP29,theUnitedNationsClimateChangeConferenceinBaku,Azerbaijan.ThewinnersofthiscompetitionwillberecognizedfortheircontributionstotheGreenDigitalActiontrack,highlightingtheroleofAIinpromotingsustainablepracticesandmitigatingclimatechange.
3.5FusionEnergy
The
FusionChallenge
,partoftheIAEACoordinatedResearchProjectonAIforFusion,exploresthepotentialofMLinpredictivemodelingforfusionenergysystems.Fusionenergy,generatedbycombininglightelementstoformaheavierone,representsapromisingalternativeenergysource.Thischallengeengagesthescientificcommunityindevelopingcross-machinedisruptionpredictionmodelsusingML,utilizingdatafromfusiondevicessuchasAlcatorC-Mod,J-TEXT,andHL-2A.Participantsgainhands-onexperienceinAI/MLapplicationsrelevanttofusionenergyscience,competingforprizes,recognition,andcertificates.Thiscompetitionsupportstheglobalefforttomakefusionacommerciallyviableenergysource.
TheITUAI/MLChallenge,throughitsdiversedomainsandcompetitions,continuestodriveinnova-tionandcollaborationinAI/ML.Byaddressingcriticalissuesacrossvarioussectors,thechallengecontributestotheadvancementofglobalstandardsandthedevelopmentofsolutionsthathaveasignificantimpactonsociety.
7
CrowdsourcingAIandMachineLearningsolutionsforSDGs
4Participation
ParticipationisopentoITUmembersandanyindividualfromanITUMemberState.“Participants”areindividualsorcompaniesthatparticipateintheITUAI/MLin5GChallenge,providingsolutionstoproblemsetsoftheChallenge.
Therearetwocategoriesofparticipants:studentandprofessional.
4.1MotivationtoParticipate
Aftereachiterationofthechallengeiscompleted,participantsareaskedtocompleteasurveypreparedbythechallengesecretariat.Oneofthekeyquestionsinthesurveyfocusesontheparticipants'motivationforjoiningthechallenge.ThefigurebelowillustratesthevariousreasonswhyindividualschoosetoparticipateintheITUAI/MLChallenges.Notably,theprimarymotivationformostparticipantsistheopportunitytoupskillorenhancetheirprofessionaloracademiccapabilities,ratherthanthepursuitofprizes.
Figure4:Motivationtoparticipateinthechallenge
8
CrowdsourcingAIandMachineLearningsolutionsforSDGs
4.2Statistics
ITU’smachinelearningchallengeshaveseenanexponentialincreaseinparticipationsince2020,welcomingover8,000participantsfrommorethan100countries,withdevelopingcountriesparticularlywellrepresented,asthechartbelowdemonstrates.
Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020
Thenumberofparticipantshasincreasedfourtimessince2020reachingaround8000intheyear2023.Seethegraphbelow:
Figure6:CombinedGrowthoftheChallengebyType
9
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Participantsinthechallengehavemademorethan23’000submissionstothechallengebyJuneof2024.ThebelowtablesshowgranularparticipationdetailstosomeproblemstatementsoftheITUAI/MLChallengeproblemstatementsin2023.MostoftheseproblemstatementswerehostedthroughtheZindiplatform.
Table1:CompetitionDetails
10
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Figure7:Participationandtotal#submissionsfor2023invariousdomainsoftheITUAI/MLChallenges
Thegenderdistributiongraphrevealsthatnearly80%oftheparticipantsaremale,highlightingtheimportanceofencouraginggreaterfemaleparticipation.
Figure8:ParticipantsGenderDistribution
4.3ChallengePhases/Timeline
TheITUAI/MLChallengeisrunthroughouttheyeardependingonproblemstatementsprovidedbypartners.Anexampleofachallengetimelineforthe2023ITUAI/MLin5GChallengeisillustratedbelowtoshowthevariousphasesofthechallenge.
11
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Figure9:2023ITUAI/MLChallengeTimeline
12
CrowdsourcingAIandMachineLearningsolutionsforSDGs
5Problemstatements
ParticipantsoftheITUAI/MLChallengecansolvereal-worldproblems(includingthosewithsocialrelevance).ProblemstatementsarecontributedeitherfromITU’sstandardsandspecifications,orfromhostsofproblemstatementswhoareinstitutionsinterestedinadvancingSDGsorcanbedecidedbytheparticipant(s)themselves.Problemstatementswillfallintoaspecificchallengedomainbasedontheproblemowner(host)interestandresources.
The
AIforGoodGlobalSummit
identifiespracticalapplicationsofAI/MLwiththepotentialtoaccelerateprogresstowardsthe
UnitedNationsSustainableDevelopmentGoals
.Solutionsareinvitedinfieldssuchaseducation,healthcareandwellbeing,socialandeconomicequality,climateaction,naturaldisastermanagement,space,andsmartandsafemobility.SelectedteamswillbeinvitedtoparticipateintheAIforGoodSummit.
Figure10:SampleChallengeproblemstatements
TheITUAI/MLChallengecontinuestohostproblemstatementsfromhostsaroundtheworld.Someofthescheduledproblemstatementsareasfollows:
?GreenTelecom:SmartEnergySupplyScheduling[Smartenergysupplyschedulingforbothcarbonfootprintreductionandnetworkreliabilityguarantee]
?Beam-levelTrafficPrediction
?SpecializingLargeLanguageModelsforTelecomNetworks
?Ground-levelNO2EstimationChallenge
?RadioResourceManagement(RRM)for6Gin-XSubnetworks
TheITUAI/MLChallengeservesasacrucialbridgebetweencurrentinnovationsandfutureresearchandstandards.Byengagingparticipantsinsolvingreal-worldproblemsusingAIandML,thechallengefostersthedevelopmentofpracticalsolutionsthatcaninformfutureresearchdirections.Thesesolutionsoftenleadtonewinsightsanddiscoveries,fuellingfurtherinvestigationsandacademicstudies.
13
CrowdsourcingAIandMachineLearningsol
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東省煙臺市、龍口市英語七下期中學業水平測試試題含答案
- 數字化運營視角下的2025年商業地產客戶滿意度提升策略報告
- 2025年虛擬偶像產業發展趨勢與市場分析報告
- 文化遺產數字化展示與傳播在數字博物館建設中的應用策略報告
- 2025年廣東省佛山市南海區新芳華學校八下英語期末調研模擬試題含答案
- 2025年醫藥企業CRO研發外包的合作模式與項目風險控制報告
- 準備培訓課件的通知
- 新能源汽車生產基地產業競爭力評估與初步設計報告
- 爆破考試試題及答案
- 2025年金融業人工智能算法審計在審計效率提升中的實踐報告
- 《環保節能培訓》課件
- 視網膜靜脈阻塞護理查房
- 員工健康管理規定
- 飛機結構設計課件
- JCT1041-2007 混凝土裂縫用環氧樹脂灌漿材料
- 赤峰高新技術產業開發區元寶山產業園(原元寶山綜合產業園區區塊)地質災害危險性評估報告
- 2023年07月山東濰坊市中心血站招考聘用5人上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- 建筑固定消防設施課件
- USSF-美國太空部隊數字服務遠景(英文)-2021.5-17正式版
- 《全國醫療服務價格項目規范》(2022版)
- 滄州市河間市2023年數學六下期末綜合測試模擬試題含解析
評論
0/150
提交評論