




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省惠州市華羅庚中學2025屆高二上數學期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數列中,滿足,,設,則()A. B.C. D.2.對任意實數,在以下命題中,正確的個數有()①若,則;②若,則;③若,則;④若,則A. B.C. D.3.一輛汽車做直線運動,位移與時間的關系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.34.“楊輝三角”是中國古代重要的數學成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數陣,記為圖中虛線上的數,,,,…構成的數列的第項,則的值為()A. B.C. D.5.已知正的邊長為,那么的平面直觀圖的面積為()A. B.C. D.6.若,,則有()A. B.C. D.7.連續拋擲一枚硬幣3次,觀察正面出現的情況,事件“至少2次出現正面”的對立事件是()A.只有2次出現反面 B.至多2次出現正面C.有2次或3次出現正面 D.有2次或3次出現反面8.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.159.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.10.為了了解某地區的名學生的數學成績,打算從中抽取一個容量為的樣本,現用系統抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.11.設為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定12.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數m的最大值為2021C.“”是“函數在內有零點”的必要不充分條件D.已知,且,則的最小值為9二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:和點,若點N為圓C上一動點,點Q為平面上一點且,則Q點縱坐標的最大值為______14.已知橢圓的左、右焦點分別為F1,F2,P為橢圓上一點,且(O為坐標原點).若,則橢圓的離心率為________15.函數的圖象在點處的切線方程為______16.過點作圓的兩條切線,切點為A,B,則直線的一般式方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為深入學習貫徹總書記在黨史學習教育動員大會上的重要講話精神和中共中央有關決策部署,推動教育系統圍繞建黨百年重大主題,深化中學在校師生理想信念教育,引導師生學史明理、學史增信、學史崇德、學史力行,以昂揚的狀態迎接中國共產黨建黨周年,哈工大附中高二年級組織本年級同學開展了一場黨史知識競賽.為了解本次知識競賽的整體情況,隨機抽取了名學生的成績作為樣本進行統計,得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識競賽成績的第50百分位數(精確到0.1);(2)已知該樣本分數在的學生中,男生占,女生占現從該樣本分數在的學生中隨機抽出人,求至少有人是女生的概率.18.(12分)某工廠為了對新研發的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:單價x(元)88.28.48.68.89銷量y(件)908483807568(1)求回歸直線方程中的實數;(2)根據回歸方程預測當單價為10元時的銷量.19.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設直線不經過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標20.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點,且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.21.(12分)已知數列{an}是一個等差數列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值22.(10分)年世界人工智能大會已于年月在上海徐匯西岸舉行,某高校的志愿者服務小組受大會展示項目的啟發,會后決定開發一款“貓捉老鼠”的游戲.如圖所示,、兩個信號源相距米,是的中點,過點的直線與直線的夾角為,機器貓在直線上運動,機器鼠的運動軌跡始終滿足:接收到點的信號比接收到點的信號晚秒(注:信號每秒傳播米).在時刻時,測得機器鼠距離點為米.(1)以為原點,直線為軸建立平面直角坐標系(如圖),求時刻時機器鼠所在位置的坐標;(2)游戲設定:機器鼠在距離直線不超過米的區域運動時,有“被抓”的風險.如果機器鼠保持目前的運動軌跡不變,是否有“被抓”風險?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數列的遞推式求值和歸納推理思想的應用,意在考查學生合情推理的意識和數學建模能力2、B【解析】直接利用不等式的基本性質判斷.【詳解】①因為,則,根據不等式性質得,故正確;②當時,,而,故錯誤;③因為,所以,即,故正確;④當時,,故錯誤;故選:B3、D【解析】首先求出函數的導函數,依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導數在物理中的應用,屬于基礎題.4、B【解析】根據楊輝三角可得數列的遞推公式,結合累加法可得數列的通項公式與.【詳解】由已知可得數列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.5、D【解析】作出正的實際圖形和直觀圖,計算出直觀圖的底邊上的高,由此可求得的面積.【詳解】如圖①②所示的實際圖形和直觀圖.由斜二測畫法可知,,,在圖②中作于,則.所以.故選:D.【點睛】本題考查直觀圖面積的計算,考查計算能力,屬于基礎題.6、D【解析】對待比較的代數式進行作差,利用不等式基本性質,即可判斷大小.【詳解】因為,又,,故,則,即;因為,又,,故,則;綜上所述:.故選:D.7、D【解析】根據對立事件的定義即可得出結果.【詳解】對立事件是指事件A和事件B必有一件發生,連續拋擲一枚均勻硬幣3次,“至少2次出現正面”即有2次或3次出現正面,對立事件為0次或1次出現正面,即“有2次或3次出現反面”故選:D8、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設,則,,∴.故選:D.9、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.10、D【解析】根據每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數和抽取的樣本容量除以總體個數即可求解.【詳解】根據系統抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.11、A【解析】由拋物線方程求出準線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準線為,設,由拋物線的定義可得,因為過點作于,可得,所以,故選:A.12、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據充分不必要條件直接判斷;對于C:判斷出“”是“函數在內有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數m的最大值為2021.故B正確;對于C:“函數在內有零點”,則,解得:或,所以“”是“函數在內有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出點N的坐標,探求出點Q的軌跡,再求出軌跡上在x軸上方且距離x軸最遠的點的縱坐標表達式,借助函數最值計算作答.【詳解】圓C:的圓心,半徑,圓C與x軸相切,依題意,點M在圓C上,設點,則,線段MN中點,因,則點Q的軌跡是以線段MN為直徑的圓(除點M,N外),這個軌跡在x軸上方,于是得這個軌跡上的點到x軸的最大距離為:令,于是得,當,即時,,所以Q點縱坐標的最大值為.故答案為:【點睛】結論點睛:圓上的點到定直線距離的最大值等于圓心到該直線距離加半徑.14、##【解析】由向量的數量積得,從而得,利用勾股定理和橢圓的定義可得的等式,從而求得離心率【詳解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案為:15、【解析】求出、的值,利用點斜式可得出所求切線的方程.【詳解】因為,則,所以,,,故所求切線方程為,即.故答案為:.16、【解析】已知圓的圓心,點在以為直徑的圓上,兩圓相減就是直線的方程.【詳解】,圓心,點在以為直徑的圓上,,所以圓心是,以為直徑的圓的圓的方程是,直線是兩圓相交的公共弦所在直線,所以兩圓相減就是直線的方程,,所以直線的一般式方程為.故答案為:【點睛】結論點睛:過圓外一點引圓的切線,那么以圓心和圓外一點連線段為直徑的圓與已知圓相減,就是切點所在直線方程,或是兩圓相交,兩圓相減,就是公共弦所在直線方程.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數的定義求出知識競賽成績的第50百分位數;(2)先利用分層抽樣求出男、女生的人數,利用古典概型求概率.【小問1詳解】,由,解得設該次知識競賽成績的第50百分位數為x,則,解得:.即該次知識競賽成績的第50百分位數為【小問2詳解】由頻率分布直方圖可知:分數在)的人數有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為18、(1)250.(2)50(件).【解析】(1)數據的平均值一定在回歸直線上;(2)將x=10代入回歸方程即可.【小問1詳解】由表中數據可得,,,代入,解得.【小問2詳解】由(1)得,故單價為10元時,.當單價為10元時銷量為50件.19、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設斜率存在,設出直線,利用斜率之和為,求出之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關鍵點在于先假設斜率存在,設出直線,利用題目所給條件得到之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.20、(1);(2).【解析】(1)設圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據點到直線的距離公式可求得答案.【詳解】解:(1)設圓方程為:,根據題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點到直線的距離所以,四邊形面積的最小值為.21、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值422、(1);(2)沒有.【解析】(1)設機器鼠位置為點,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,分析取值,即得解雙曲線的方程,由可得P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全注射試題及答案大全
- 安全員b考試試題及答案
- 2025年零售行業新零售門店設計與顧客行為研究報告
- 聚焦2025:工業互聯網平臺區塊鏈智能合約安全防護與合規性審查報告001
- 安全工程師試題及答案
- 工業互聯網平臺傳感器網絡自組網技術在智能倉儲中的應用案例分析報告001
- 2025年大數據存儲市場規模增長與技術創新分析報告
- 隱私保護培訓課件內容
- 配電裝置培訓課件
- 創極地培訓課課件
- 阿米巴經營模式協議書模板
- 江蘇省盱眙縣2024屆八年級英語第二學期期末質量檢測試題含答案
- 結婚函調報告表
- 浙江省杭州市濱江區2023-2024學年八年級下學期期末科學試題(原卷版)
- 陜西延長石油集團有限責任公司招聘筆試題庫
- 【許林芳老師】-《企業文化構建與落地》
- 2024年遼寧省中考地理試題(無答案)
- 湖北省荊門市2023-2024學年七年級下學期6月期末考試生物試題
- 廣東省廣州市越秀區執信中學2025屆高一下數學期末教學質量檢測模擬試題含解析
- 水資源利用與保護智慧樹知到期末考試答案章節答案2024年山東建筑大學
- 光伏發電技術項目投標書(技術標)
評論
0/150
提交評論