




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市越秀區執信中學2025屆高一下數學期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.當時,不等式恒成立,則實數m的取值范圍是()A. B. C. D.2.不等式的解集為A. B. C. D.3.函數的圖象大致為()A. B. C. D.4.對于任意實數,下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.以為圓心,且與兩條直線,都相切的圓的標準方程為()A. B.C. D.6.對某班學生一次英語測試的成績分析,各分數段的分布如下圖(分數取整數),由此,估計這次測驗的優秀率(不小于80分)為()A.92% B.24% C.56% D.76%7.等比數列{an}中,a3=12A.3×10-5C.128 D.3×2-58.已知平面向量,,若與同向,則實數的值是()A. B. C. D.9.在投資生產產品時,每生產需要資金200萬,需場地,可獲得300萬;投資生產產品時,每生產需要資金300萬,需場地,可獲得200萬,現某單位可使用資金1400萬,場地,則投資這兩種產品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬10.過點,且圓心在直線上的圓的方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數的定義域________.12.函數的定義域記作集合,隨機地投擲一枚質地均勻的正方體骰子(骰子的每個面上分別標有點數,,,),記骰子向上的點數為,則事件“”的概率為________.13.已知函數的圖象如圖所示,則不等式的解集為______.14.已知向量滿足,則與的夾角的余弦值為__________.15.已知單位向量與的夾角為,且,向量與的夾角為,則=.16.已知數列滿足,,,記數列的前項和為,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.已知數列滿足.(1)若,求的取值范圍;(2)若是公比為等比數列,,求的取值范圍;(3)若成等差數列,且,求正整數的最大值,以及取最大值時相應數列的公差.18.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統計的頻率分布直方圖如圖所示.(1)估計這組數據的平均數(同一組中的數據以這組數據所在區間中點的值作代表);(2)現按分層抽樣從質量為[200,250),[250,300)的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質量區間的概率;(3)某經銷商來收購芒果,同一組中的數據以這組數據所在區間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出以下兩種收購方案:方案①:所有芒果以9元/千克收購;方案②:對質量低于250克的芒果以2元/個收購,對質量高于或等于250克的芒果以3元/個收購.通過計算確定種植園選擇哪種方案獲利更多.參考數據:.19.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.20.設{an}是等差數列,a1=–10,且a2+10,a3+8,a4+6成等比數列.(Ⅰ)求{an}的通項公式;(Ⅱ)記{an}的前n項和為Sn,求Sn的最小值.21.的內角,,的對邊分別為,,,為邊上一點,為的角平分線,,.(1)求的值:(2)求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
當x>0時,不等式x2﹣mx+9>0恒成立?m<(x)min,利用基本不等式可求得(x)min=6,從而可得實數m的取值范圍.【詳解】當x>0時,不等式x2﹣mx+9>0恒成立?當x>0時,不等式m<x恒成立?m<(x)min,當x>0時,x26(當且僅當x=3時取“=”),因此(x)min=6,所以m<6,故選A.【點睛】本題考查函數恒成立問題,分離參數m是關鍵,考查等價轉化思想與基本不等式的應用,屬于中檔題.2、D【解析】
把不等式化為,即可求解不等式的解集,得到答案.【詳解】由題意,不等式可化為,解得或,即不等式的解集為,故選D.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、C【解析】
利用函數的性質逐個排除即可求解.【詳解】函數的定義域為,故排除A、B.令又,即函數為奇函數,所以函數的圖像關于原點對稱,排除D故選:C【點睛】本題考查了函數圖像的識別,同時考查了函數的性質,屬于基礎題.4、C【解析】
根據是任意實數,逐一對選項進行分析即得。【詳解】由題,當時,,則A錯誤;當,時,,則B錯誤;可知,則有,因此C正確;當時,有,可知C錯誤.故選:C【點睛】本題考查判斷正確命題,是基礎題。5、C【解析】
由題意有,再求解即可.【詳解】解:設圓的半徑為,則,則,即圓的標準方程為,故選:C.【點睛】本題考查了點到直線的距離公式,重點考查了運算能力,屬基礎題.6、C【解析】試題分析:.故C正確.考點:頻率分布直方圖.7、D【解析】
根據等比數列的通項公式得到公比,進而得到通項.【詳解】設公比為q,則12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故選D.【點睛】本題考查了等比數列通項公式的應用,屬于簡單題.8、D【解析】
通過同向向量的性質即可得到答案.【詳解】與同向,,解得或(舍去),故選D.【點睛】本題主要考查平行向量的坐標運算,但注意同向,難度較小.9、B【解析】
設生產產品x百噸,生產產品百噸,利潤為百萬元,先分析題意,找出相關量之間的不等關系,即滿足的約束條件,由約束條件畫出可行域;要求應作怎樣的組合投資,可使獲利最大,即求可行域中的最優解,在線性規劃的解答題中建議使用直線平移法求出最優解,即將目標函數看成是一條直線,分析目標函數與直線截距的關系,進而求出最優解.【詳解】設生產產品百噸,生產產品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區域:目標函數為.由解得.使目標函數為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當直線過點時截距最大.此時應作生產產品3.25百噸,生產產品2.5百噸的組合投資,可使獲利最大.
故選:B.【點睛】在解決線性規劃的應用題時,其步驟為:①分析題目中相關量的關系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標函數Z與直線截距之間的關系?④使用平移直線法求出最優解?⑤還原到現實問題中.屬于中檔題.10、C【解析】
直接根據所給信息,利用排除法解題。【詳解】本題作為選擇題,可采用排除法,根據圓心在直線上,排除B、D,點在圓上,排除A故選C【點睛】本題考查利用排除法選出圓的標準方程,屬于基礎題。二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據反正弦函數的定義得出,解出可得出所求函數的定義域.【詳解】由反正弦的定義可得,解得,因此,函數的定義域為,故答案為:.【點睛】本題考查反正弦函數的定義域,解題的關鍵就是正弦值域的應用,考查運算求解能力,屬于基礎題.12、【解析】要使函數有意義,則且,即且,即,隨機地投擲一枚質地均勻的正方體骰子,記骰子向上的點數為,則,則事件“”的概率為.13、【解析】
根據函數圖象以及不等式的等價關系即可.【詳解】解:不等式等價為或,
則,或,
故不等式的解集是.
故答案為:.【點睛】本題主要考查不等式的求解,根據不等式的等價性結合圖象之間的關系是解決本題的關鍵.14、【解析】
由得,結合條件,即可求出,的值,代入求夾角公式,即可求解.【詳解】由得與的夾角的余弦值為.【點睛】本題考查數量積的定義,公式的應用,求夾角公式的應用,計算量較大,屬基礎題.15、【解析】試題分析:因為所以考點:向量數量積及夾角16、7500【解析】
討論的奇偶性,分別化簡遞推公式,根據等差數列的定義得的通項公式,進而可求.【詳解】當是奇數時,=﹣1,由,得,所以,,,…,…是以為首項,以2為公差的等差數列,當為偶數時,=1,由,得,所以,,,…,…是首項為,以4為公差的等差數列,則,所以.故答案為:7500【點睛】本題考查數列遞推公式的化簡,等差數列的通項公式,以及等差數列前n項和公式的應用,也考查了分類討論思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)的最大值為1999,此時公差為.【解析】
(1)依題意:,又將已知代入求出x的范圍;(2)先求出通項:,由求出,對q分類討論求出Sn分別代入不等式Sn≤Sn+1≤3Sn,得到關于q的不等式組,解不等式組求出q的范圍.(3)依題意得到關于k的不等式,得出k的最大值,并得出k取最大值時a1,a2,…ak的公差.【詳解】(1)依題意:,∴;又∴3≤x≤27,綜上可得:3≤x≤6(2)由已知得,,,∴,當q=1時,Sn=n,Sn≤Sn+1≤3Sn,即,成立.當1<q≤3時,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而對于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又當1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,當時,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴時,不等式恒成立,∴q的取值范圍為:.(3)設a1,a2,…ak的公差為d.由,且a1=1,得即當n=1時,d≤2;當n=2,3,…,k﹣1時,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值為1999,k=1999時,a1,a2,…ak的公差為.【點睛】本題考查等比數列的通項公式及前n項和的求法;考查不等式組的解法;找好分類討論的起點是解決本題的關鍵,屬于一道難題.18、(1)255;(2);(3)選擇方案②獲利多【解析】
1)由頻率分布直方圖能求出這組數據的平均數.(2)利用分層抽樣從這兩個范圍內抽取5個芒果,則質量在[200,250)內的芒果有2個,記為a1,a2,質量在[250,300)內的芒果有3個,記為b1,b2,b3,從抽取的5個芒果中抽取2個,利用列舉法能求出這2個芒果都來自同一個質量區間的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入為8400元,不低于250克的芒果的收入為17400元,由此能求出選擇方案②獲利多.【詳解】(1)由頻率分布直方圖知,各區間頻率為0.07,0.15,0.20,0.30,0.25,0.03這組數據的平均數.(2)利用分層抽樣從這兩個范圍內抽取5個芒果,則質量在[200,250)內的芒果有2個,記為,,質量在[250,300)內的芒果有3個,記為,,;從抽取的5個芒果中抽取2個共有10種不同情況:,,,,,,,,,.記事件為“這2個芒果都來自同一個質量區間”,則有4種不同組合:,,,從而,故這2個芒果都來自同一個質量區間的概率為.(3)方案①收入:(元);方案②:低于250克的芒果收入為(元);不低于250克的芒果收入為(元);故方案②的收入為(元).由于,所以選擇方案②獲利多.【點睛】本題考查平均數、概率的求法,考查頻率分布直方圖、古典概型等基礎知識,考查運算求解能力,考查函數與方程思想,是中檔題.19、(1)見解析;(2)【解析】
(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設,在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 口腔門診部消防管理制度
- 施工風險評估管理制度
- 培訓機構無障礙管理制度
- 幼兒園教師出行管理制度
- 幼兒園知識產權管理制度
- 公司工程搶修車管理制度
- 服務行業員工管理制度
- ktv酒吧倉庫管理制度
- 大學生創業公司管理制度
- 危廢品運輸公司管理制度
- MOOC 心理學與生活-南京大學 中國大學慕課答案
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設計規范-PDF解密
- 夜市應急方案及措施
- 2024年北京海淀社區工作者招聘筆試沖刺題(帶答案解析)
- 2024年公需科目培訓試題及答案
- 幼兒園玩教具供貨運輸配送方案
- 計量經濟學論文(eviews分析)影響我國人口預期壽命的可能因素分析
- 足球公園計劃書
- 銀行合規文化培訓課件
- 礦山生態修復工程驗收規范
- 雙減背景下提升學業水平初中英語作業設計策略研究課題開題報告
評論
0/150
提交評論