




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的傾斜角為,則的值為()A. B. C. D.2.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.3.已知數列對任意的有成立,若,則等于()A. B. C. D.4.若函數的圖象向右平移個單位長度得到函數的圖象,若函數在區間上單調遞增,則的最大值為().A. B. C. D.5.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形7.點為的三條中線的交點,且,,則的值為()A. B. C. D.8.下列不等式成立的是()A. B. C. D.9.已知角的終邊與單位圓交于點,則等于()A. B. C. D.10.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.11.已知數列中,,(),則等于()A. B. C. D.212.已知過點且與曲線相切的直線的條數有().A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示的流程圖中,輸出的值為______.14.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.15.在正奇數非減數列中,每個正奇數出現次.已知存在整數、、,對所有的整數滿足,其中表示不超過的最大整數.則等于______.16.已知正方形邊長為,空間中的動點滿足,,則三棱錐體積的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了加強環保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.18.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)在平面直角坐標系中,已知直線l的參數方程為(t為參數),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.20.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.21.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.22.(10分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據題意可得:,所求式子利用二倍角的正弦函數公式化簡,再利用同角三角函數間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數公式,同角三角函數間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.2、B【解析】
根據,可知命題的真假,然后對取值,可得命題的真假,最后根據真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.3、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.4、C【解析】
由題意利用函數的圖象變換規律,正弦函數的單調性,求出的最大值.【詳解】解:把函數的圖象向右平移個單位長度得到函數的圖象,若函數在區間,上單調遞增,在區間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數的圖象變換規律,正弦函數的單調性,屬于基礎題.5、B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據系數關系來考慮,后者依據兩個條件之間的推出關系,本題屬于中檔題.6、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.7、B【解析】
可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.8、D【解析】
根據指數函數、對數函數、冪函數的單調性和正余弦函數的圖象可確定各個選項的正誤.【詳解】對于,,,錯誤;對于,在上單調遞減,,錯誤;對于,,,,錯誤;對于,在上單調遞增,,正確.故選:.【點睛】本題考查根據初等函數的單調性比較大小的問題;關鍵是熟練掌握正余弦函數圖象、指數函數、對數函數和冪函數的單調性.9、B【解析】
先由三角函數的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數的定義和二倍角公式,是基礎題.10、A【解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質,考查漸近線方程的求法,考查方程思想和運算能力,屬于基礎題.11、A【解析】
分別代值計算可得,觀察可得數列是以3為周期的周期數列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數列是以3為周期的周期數列,
,
,
故選:A.【點睛】本題考查數列的周期性和運用:求數列中的項,考查運算能力,屬于基礎題.12、C【解析】
設切點為,則,由于直線經過點,可得切線的斜率,再根據導數的幾何意義求出曲線在點處的切線斜率,建立關于的方程,從而可求方程.【詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.【點睛】本題主要考查了利用導數求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數的幾何意義求解切線的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
根據流程圖依次運行直到,結束循環,輸出n,得出結果.【詳解】由題:,,,結束循環,輸出.故答案為:4【點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環結構和判斷框語句.14、【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經過原點O.【詳解】設點,由題意可得,,,可得,設直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.15、2【解析】
將已知數列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.16、【解析】
以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,設點,根據題中條件得出,進而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,則,,,設點,空間中的動點滿足,,所以,整理得,,當,時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)所抽取的人中得分落在組和內的人數分別為人、人;(2)分布列見解析,.【解析】
(1)將分別乘以區間、對應的矩形面積可得出結果;(2)由題可知,隨機變量的可能取值為、、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數有(人),得分落在組的人數有(人).因此,所抽取的人中得分落在組的人數有人,得分落在組的人數有人;(2)由題意可知,隨機變量的所有可能取值為、、,,,,所以,隨機變量的分布列為:所以,隨機變量的期望為.【點睛】本題考查利用頻率分布直方圖計算頻數,同時也考查了離散型隨機變量分布列與數學期望的求解,考查計算能力,屬于基礎題.18、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區間上的單調性,可知函數在區間上是減函數,在區間上是增函數,由此即可求得函數在閉區間上的最大值和最小值.也可以利用整體思想求函數在閉區間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區間上是減函數,在區間上是增函數,,,∴函數在閉區間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數的周期性和單調性.19、(1)l:,C:;(2)【解析】
(1)直接利用轉換關系,把參數方程直角坐標方程和極坐標方程之間進行轉換;
(2)由(1)可得曲線是圓,求出圓心坐標及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.∴圓心到直線的距離為:.∴【點睛】本題考查直線的普通坐標方程、曲線的直角坐標方程的求法,考查弦長的求法、運算求解能力,是中檔題.20、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數列的通項公式即可得出;(2)利用“錯位相減法”、等比數列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數列的性質;數列的求和.【方法點晴】本題主要考查了等差數列的通項公式、“錯位相減法”、等比數列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.21、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據三角形內切圓的性質證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內切圓,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 客房及前臺管理制度
- 室外乒乓桌管理制度
- 家庭小倉庫管理制度
- 應屆生培訓管理制度
- 張金寶發票管理制度
- 循環水設備管理制度
- 微商城日常管理制度
- 心理室預約管理制度
- 快消品銷售管理制度
- 急危重患者管理制度
- 上海市市轄區(2024年-2025年小學五年級語文)統編版期末考試(下學期)試卷及答案
- 一級建造師執業資格考試大綱(2024年版)
- 科技成果轉化實施獎勵制度
- 近3年國網系統安全事故(事件)通報+各專業嚴重違章專項測試題附答案
- 肺孢子菌肺炎護理查房
- 2023年法律職業資格《主觀題》真題及答案
- 2024年初三數學競賽考試試題
- 2024年《形勢與政策》知識考試題庫(含答案)
- LY/T 3391-2024植物新品種特異性、一致性、穩定性測試指南紫荊屬
- HG20202-2014 脫脂工程施工及驗收規范
- 2025年高考地理復習:人教版必修第一冊高頻考點知識點提綱
評論
0/150
提交評論