




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省衢州市2024屆中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)2.某班選舉班干部,全班有1名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,1.老師規定:同意某同學當選的記“1”,不同意(含棄權)的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是()A.同意第1號或者第2號同學當選的人數B.同時同意第1號和第2號同學當選的人數C.不同意第1號或者第2號同學當選的人數D.不同意第1號和第2號同學當選的人數3.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環數均為8.7環,方差分別為,,,,則四人中成績最穩定的是()A.甲 B.乙 C.丙 D.丁4.下列運算結果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+bD.6ab2÷2ab=3b5.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.下列運算正確的是()A.a?a2=a2 B.(ab)2=ab C.3﹣1= D.7.根據中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發送旅客3.82億人次.3.82億用科學記數法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10108.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=19.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×10510.計算的結果是()A.a2 B.-a2 C.a4 D.-a411.內角和為540°的多邊形是()A. B. C. D.12.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把多項式3x2-12因式分解的結果是_____________.14.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm15.若函數y=m-2x16.已知是方程組的解,則3a﹣b的算術平方根是_____.17.二十四節氣列入聯合國教科文組織人類非物質文化遺產代表作名錄.太陽運行的軌道是一個圓形,古人將之稱作“黃道”,并把黃道分為24份,每15度就是一個節氣,統稱“二十四節氣”.這一時間認知體系被譽為“中國的第五大發明”.如圖,指針落在驚蟄、春分、清明區域的概率是_____.18.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:x220.(6分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據統計結果繪制如下兩個統計圖(如圖),根據統計圖提供的信息,解答下列問題:請你補全條形統計圖;在扇形統計圖中,求“碳酸飲料”所在的扇形的圓心角的度數;為了養成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.21.(6分)“校園詩歌大賽”結束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數)進行整理,并分別繪制成扇形統計圖和頻數直方圖部分信息如下:本次比賽參賽選手共有人,扇形統計圖中“69.5~79.5”這一組人數占總參賽人數的百分比為;賽前規定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績為78分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發言,試求恰好選中1男1女的概率.22.(8分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?23.(8分)如圖是根據對某區初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調查,并繪制了下面不完整的條形統計圖和扇形統計圖(每人必選一種讀物,并且只能選一種),根據提供的信息,解答下列問題:(1)求該區抽樣調查人數;(2)補全條形統計圖,并求出最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角度數;(3)若該區有初中生14400人,估計該區有初中生最喜歡讀“名人傳記”的學生是多少人?24.(10分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數.25.(10分)如圖,在中,,為邊上的中線,于點E.求證:;若,,求線段的長.26.(12分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.27.(12分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.2、B【解析】
先寫出同意第1號同學當選的同學,再寫出同意第2號同學當選的同學,那么同時同意1,2號同學當選的人數是他們對應相乘再相加.【詳解】第1,2,3,……,1名同學是否同意第1號同學當選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學當選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是同時同意第1號和第2號同學當選的人數,故選B.【點睛】本題考查了推理應用題,題目比較新穎,是基礎題.3、D【解析】
根據方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩定,故選D.【點睛】此題主要考查了方差,關鍵是掌握方差越小,穩定性越大.4、D【解析】
各項計算得到結果,即可作出判斷.【詳解】解:A、原式=2a,不符合題意;
B、原式=a2-2ab+b2,不符合題意;
C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;
故選D【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.5、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數根,∴,即,解得:k<5且k≠1.故選B.6、C【解析】
根據同底數冪的乘法法則對A進行判斷;根據積的乘方對B進行判斷;根據負整數指數冪的意義對C進行判斷;根據二次根式的加減法對D進行判斷.【詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數相同的二次根式進行合并,合并方法為系數相加減,根式不變.也考查了整式的運算.7、B【解析】
根據題目中的數據可以用科學記數法表示出來,本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點睛】本題考查科學記數法-表示較大的數,解答本題的關鍵是明確科學記數法的表示方法.8、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗9、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數法—表示較大的數.10、D【解析】
直接利用同底數冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數冪的乘法運算,正確掌握運算法則是解題關鍵.11、C【解析】試題分析:設它是n邊形,根據題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內角與外角.12、B【解析】
由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數值可以求出∠EBC的度數和∠CEP的度數,則∠CEP=∠BEP,運用勾股定理及三角函數值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質的運用,相似三角形的判定及性質的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質的運用,解答時根據比例關系設出未知數表示出線段的長度是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3(x+2)(x-2)【解析】
因式分解時首先考慮提公因式,再考慮運用公式法;多項式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.【詳解】3x2-12=3()=3.14、【解析】
根據三角形的面積公式求出=,根據等腰三角形的性質得到BD=DC=BC,根據勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質、勾股定理的應用和三角形面積公式的應用,根據三角形的面積公式求出腰與底的比是解題的關15、m>2【解析】試題分析:有函數y=m考點:反比例函數的性質.16、2.【解析】
靈活運用方程的性質求解即可。【詳解】解:由是方程組的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術平方根是,故答案:【點睛】本題主要考查二元一次方程組的性質及其解法。17、【解析】
首先由圖可得此轉盤被平分成了24等份,其中驚蟄、春分、清明區域有3份,然后利用概率公式求解即可求得答案.【詳解】∵如圖,此轉盤被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【點睛】此題考查了概率公式的應用.注意概率=所求情況數與總情況數之比.18、【解析】
把(1,4)代入兩函數表達式可得:a+b=4,再根據“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、12【解析】
這道求代數式值的題目,不應考慮把x的值直接代入,通常做法是先化簡,然后再代入求值.【詳解】解:原式=?﹣=﹣=﹣=,當x=1時,原式==.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練的掌握分式的運算法則.20、(1)詳見解析;(2)72°;(3)3【解析】
(1)由B類型的人數及其百分比求得總人數,在用總人數減去其余各組人數得出C類型人數,即可補全條形圖;(2)用360°乘以C類別人數所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結果,從中確定恰好抽到一男一女的結果數,根據概率公式求解可得.【詳解】解:(1)∵抽查的總人數為:20÷40%=50(人)∴C類人數為:50-5-20-15=10(人)補全條形統計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用以及概率的求法,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分數段有5人,由扇形統計圖可知這一分數段人占10%,據此可得選手總數,然后求出89.5~99.5這一分數段所占的百分比,用1減去其他分數段的百分比即可得到分數段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分數段的人數占了60%,據此即可判斷出該選手是否獲獎;(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數占總人數的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統計圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎;(3)由題意得樹狀圖如下由樹狀圖知,共有12種等可能結果,其中恰好選中1男1女的共有8種結果,故P==.【點睛】本題考查了直方圖、扇形圖、概率,結合統計圖找到必要信息進行解題是關鍵.22、(1)2000;(2)2米【解析】
(1)設未知數,根據題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據題意得:﹣=4解得:x=2000,經檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.23、(1)該區抽樣調查的人數是2400人;(2)見解析,最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角是度數21.6°;(3)估計最喜歡讀“名人傳記”的學生是4896人【解析】
(1)由“科普知識”人數及其百分比可得總人數;(2)總人數乘以“漫畫叢書”的人數求得其人數即可補全圖形,用360°乘以“其他”人數所占比例可得;(3)總人數乘以“名人傳記”的百分比可得.【詳解】(1)840÷35%=2400(人),∴該區抽樣調查的人數是2400人;(2)2400×25%=600(人),∴該區抽樣調查最喜歡“漫畫叢書”的人數是600人,補全圖形如下:×360°=21.6°,∴最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角是度數21.6°;(3)從樣本估計總體:14400×34%=4896(人),答:估計最喜歡讀“名人傳記”的學生是4896人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖能夠清楚地表示各部分所占的百分比.24、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內角和等于180°,解得:x=36°,從而得到結論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質.25、(1)見解析;(2).【解析】
對于(1),由已知條件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性質易得AD⊥BC,∠ADC=90°;接下來不難得到∠ADC=∠BED,至此問題不難證明;對于(2),利用勾股定理求出AD,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司物資大比拼活動方案
- 公司新年猜謎語活動方案
- 公司氣氛活動方案
- 公司茶點活動方案
- 公司旅游北京策劃方案
- 公司線上抽獎活動方案
- 公司節日策劃方案
- 公司自助聚餐活動方案
- 公司甜點活動方案
- 公司百人以上團建活動方案
- AI賦能電商新機遇:柞水縣電子商務應用技能培訓大綱
- 醫療供應鏈精細化管理保障藥品安全與供應策略
- 醫院建設項目設計技術方案投標文件(技術方案)
- 2025年護膚行業新品洞察
- 小學英語游戲教學100例
- 種子萌發過程中的生物化學動態研究
- 浙江省普通高中學業水平合格性考試歷史試題(解析版)
- 創客中國創業比賽商業BP項目計劃書模板(標準邏輯直接套用)
- 人教版音樂一年級下冊《第18課 勤快人和懶惰人》教案
- 院感知識手衛生知識培訓
- 休克診療指南規范2025
評論
0/150
提交評論