江蘇省姜堰市張甸初級中學2022-2023學年數學九上期末監測模擬試題含解析_第1頁
江蘇省姜堰市張甸初級中學2022-2023學年數學九上期末監測模擬試題含解析_第2頁
江蘇省姜堰市張甸初級中學2022-2023學年數學九上期末監測模擬試題含解析_第3頁
江蘇省姜堰市張甸初級中學2022-2023學年數學九上期末監測模擬試題含解析_第4頁
江蘇省姜堰市張甸初級中學2022-2023學年數學九上期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每題4分,共48分)1.一個等腰梯形的兩底之差為12,高為6,則等腰梯形的銳角為()A.30° B.45° C.60° D.75°2.下列詩句所描述的事件中,是不可能事件的是()A.黃河入海流B.鋤禾日當午C.大漠孤煙直D.手可摘星辰3.生產季節性產品的企業,當它的產品無利潤時就會及時停產.現有一生產季節性產品的企業,其一年中獲得的利潤和月份之間的函數關系式為,則該企業一年中應停產的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月4.將分別標有“孔”“孟”“之”“鄉”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A.18 B.16 C.15.二次函數y=ax2+bx+c(a,b,c為常數且a≠0)的圖象如圖所示,則一次函數y=ax+b與反比例函數的圖象可能是A. B. C. D.6.按如圖所示的方法折紙,下面結論正確的個數()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個7.如圖,將△ABC繞點A逆時針旋轉100°,得到△ADE.若點D在線段BC的延長線上,則∠B的大小為()A.30° B.40° C.50° D.60°8.如圖,已知的三個頂點均在格點上,則的值為()A. B. C. D.9.如圖,直線與雙曲線交于、兩點,過點作軸,垂足為,連接,若,則的值是()A.2 B.4 C.-2 D.-410.二次函數在下列()范圍內,y隨著x的增大而增大.A. B. C. D.11.如圖,線段AB是⊙O的直徑,弦,,則等于().A. B. C. D.12.若雙曲線y=在每一個象限內,y隨x的增大而減小,則k的取值范圍是()A.k<3 B.k≥3 C.k>3 D.k≠3二、填空題(每題4分,共24分)13.如圖,的半徑為,的面積為,點為弦上一動點,當長為整數時,點有__________個.14.如圖,小穎周末晚上陪父母在斜江綠道上散步,她由路燈下A處前進3米到達B處時,測得影子BC長的1米,已知小穎的身高1.5米,她若繼續往前走3米到達D處,此時影子DE長為____米.15.如圖,以點為圓心,半徑為的圓與的圖像交于點,若,則的值為_______.16.拋擲一枚質地均勻的硬幣2次,2次拋擲的結果都是正面朝上的概率是____.17.若點A(m,n)是雙曲線與直線的交點,則_________.18.《孫子算經》是我國古代重要的數學著作,成書于約一千五百年前,其中有道歌謠算題:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問桿長幾何?”歌謠的意思是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五,同時立一根一尺五的小標桿,它的影長五寸(提示:仗和尺是古代的長度單位,1丈=10尺,1尺=10寸),可以求出竹竿的長為_____尺.三、解答題(共78分)19.(8分)總公司將一批襯衫由甲、乙兩家分店共同銷售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.經調查發現,每件襯杉每降價1元,甲、乙兩家店一天都可多售出2件.設甲店每件襯衫降價a元時,一天可盈利y1元,乙店每件襯衫降價b元時,一天可盈利y2元.(1)當a=5時,求y1的值.(2)求y2關于b的函數表達式.(3)若總公司規定兩家分店下降的價格必須相同,請求出每件襯衫下降多少元時,兩家分店一天的盈利和最大,最大是多少元?20.(8分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應的函數表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內,A、N是位于直線BM同側的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.21.(8分)如圖,有一路燈桿AB(底部B不能直接到達),在燈光下,小明在點D處測得自己的影長DF=3m,沿BD方向到達點F處再測得自己得影長FG=4m,如果小明的身高為1.6m,求路燈桿AB的高度.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.(1)求證:DF⊥AC;(2)若⊙O的半徑為4,∠CDF=1.5°,求陰影部分的面積.23.(10分)在平面直角坐標系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉矩形,得到矩形,點的對應點分別為,記旋轉角為.(1)如圖①,當時,求點的坐標;(2)如圖②,當點落在的延長線上時,求點的坐標;(3)當點落在線段上時,求點的坐標(直接寫出結果即可).24.(10分)如圖,在平行四邊形中,過點作垂足為.連接為線段上一點,且.求證:.25.(12分)蘇北五市聯合通過網絡投票選出了一批“最有孝心的美少年”.根據各市的入選結果制作出如下統計表,后來發現,統計表中前三行的所有數據都是正確的,后兩行中有一個數據是錯誤的.請回答下列問題:(1)統計表________,________;(2)統計表后三行中哪一個數據是錯誤的?該數據的正確值是多少?(3)組委會決定從來自宿遷市的4位“最有孝心的美少年”中,任選兩位作為蘇北五市形象代言人,、是宿遷市“最有孝心的美少年”中的兩位,問、同時入選的概率是多少?并請畫出樹狀圖或列出表格.區域頻數頻率宿遷4a連云港70.175淮安0.2徐州100.25鹽城120.27526.關于x的一元二次方程有兩個不相等的實數根.(1)求m的取值范圍;(2)若,是一元二次方程的兩個根,且,求m的值.

參考答案一、選擇題(每題4分,共48分)1、B【解析】作梯形的兩條高線,證明△ABE≌△DCF,則有BE=FC,然后判斷△ABE為等腰直角三角形求解.【詳解】如圖,作AE⊥BC、DF⊥BC,四邊形ABCD為等腰梯形,AD∥BC,BC?AD=12,AE=6,∵四邊形ABCD為等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD為矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC?AD=BC?EF=2BE=12,∴BE=6,∵AE=6,∴△ABE為等腰直角三角形,∴∠B=∠C=45°.故選B.【點睛】此題考查等腰梯形的性質,解題關鍵在于畫出圖形.2、D【解析】不可能事件是指在一定條件下,一定不發生的事件.【詳解】A、是必然事件,故選項錯誤;B、是隨機事件,故選項錯誤;C、是隨機事件,故選項錯誤;D、是不可能事件,故選項正確.故選D.【點睛】此題主要考查了必然事件,不可能事件,隨機事件的概念.理解概念是解決這類基礎題的主要方法.必然事件指在一定條件下,一定發生的事件;不可能事件是指在一定條件下,一定不發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.3、C【分析】根據解析式,求出函數值y等于2時對應的月份,依據開口方向以及增減性,再求出y小于2時的月份即可解答.【詳解】解:∵

∴當y=2時,n=2或者n=1.

又∵拋物線的圖象開口向下,

∴1月時,y<2;2月和1月時,y=2.

∴該企業一年中應停產的月份是1月、2月、1月.

故選:C.【點睛】本題考查二次函數的應用.能將二次函數由一般式化為頂點式并理解二次函數的性質是解決此題的關鍵.4、B【分析】根據簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是16故選B.考點:簡單概率計算.5、C【分析】根據二次函數y=ax2+bx+c的圖象,可以判斷a、b、c的正負情況,從而可以判斷一次函數y=ax+b與反比例函數y=的圖象分別在哪幾個象限,從而可以解答本題.【詳解】解:由二次函數y=ax2+bx+c的圖象可知,a>0,b<0,c<0,則一次函數y=ax+b的圖象經過第一、三、四象限,反比例函數y=的圖象在二四象限,故選C.【點睛】本題考查反比例函數的圖象、一次函數的圖象、二次函數的圖象,解題的關鍵是明確它們各自圖象的特點,利用數形結合的思想解答問題.6、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.7、B【解析】∵△ADE是由△ABC繞點A旋轉100°得到的,∴∠BAD=100°,AD=AB,∵點D在BC的延長線上,∴∠B=∠ADB=.故選B.點睛:本題主要考察了旋轉的性質和等腰三角形的性質,解題中只要抓住旋轉角∠BAD=100°,對應邊AB=AD及點D在BC的延長線上這些條件,就可利用等腰三角形中:兩底角相等求得∠B的度數了.8、D【分析】過B點作BD⊥AC于D,求得AB、AC的長,利用面積法求得BD的長,利用勾股定理求得AD的長,利用銳角三角函數即可求得結果.【詳解】過B點作BD⊥AC于D,如圖,

由勾股定理得,,,∵,即,在中,,,,,∴.故選:D.【點睛】本題考查了解直角三角形以及勾股定理的運用,面積法求高的運用;熟練掌握勾股定理,構造直角三角形是解題的關鍵.9、A【解析】由題意得:,又,則k的值即可求出.【詳解】設,

直線與雙曲線交于A、B兩點,

,

,,

,

,則.

又由于反比例函數位于一三象限,,故.

故選A.【點睛】本題主要考查了反比例函數中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為,是經常考查的一個知識點.10、C【分析】先求函數的對稱軸,再根據開口方向確定x的取值范圍.【詳解】,∵圖像的對稱軸為x=1,a=-1,∴當x時,y隨著x的增大而增大,故選:C.【點睛】此題考查二次函數的性質,當a時,對稱軸左減右增.11、C【分析】先根據垂徑定理得到,再根據圓周角定理得∠BOD=2∠CAB=40°,然后利用鄰補角的定義計算∠AOD的度數.【詳解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案為C.【點睛】本題考查圓中的角度計算,熟練掌握垂徑定理和圓周角定理是關鍵.12、C【分析】根據反比例函數的性質可解.【詳解】解:∵雙曲線在每一個象限內,y隨x的增大而減小,∴k-3>0∴k>3故選:C.【點睛】本題考查了反比例函數的性質,掌握反比例函數,當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減小;當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.二、填空題(每題4分,共24分)13、4【分析】從的半徑為,的面積為,可得∠AOB=90°,故OP的最小值為OP⊥AB時,為3,最大值為P與A或B點重合時,為6,故,當長為整數時,OP可以為5或6,根據圓的對稱性,這樣的P點共有4個.【詳解】∵的半徑為,的面積為∴∠AOB=90°又OA=OB=6∴AB=當OP⊥AB時,OP有最小值,此時OP=AB=當P與A或B點重合時,OP有最大值,為6,故當OP長為整數時,OP可以為5或6,根據圓的對稱性,這樣的P點共有4個.故答案為:4【點睛】本題考查的是圓的對稱性及最大值、最小值問題,根據“垂線段最短”確定OP的取值范圍是關鍵.14、2【分析】根據題意可知,本題考查相似三角形性質,根據中心投影的特點和規律以及相似三角形性質,運用相似三角形對應邊成比例進行求解.【詳解】解:根據題意可知當小穎在BG處時,∴,即∴AP=6當小穎在DH處時,∴,即∴∴DE=2故答案為:2【點睛】本題考查了中心投影的特點和規律以及相似三角形性質的運用,解題關鍵是運用相似三角形對應邊相等.15、【分析】過點B作BM⊥x軸,過點A作AN⊥y軸,先證△BOM≌△AON,由此可求出∠BOM的度數,再設B(a,b),根據銳角三角函數的定義即可求出a、b的值,即可求出答案.【詳解】解:如圖,過點B作BM⊥x軸,過點A作AN⊥y軸,∵點B、A均在反比例函數的圖象上,OA=OB,

∴點B和點A關于y=x對稱,

∴AN=BM,ON=OM,

∴△BOM≌△AON,

∴∠BOM=∠AON=∵∴∠BOM==30°,

設B(a,b),則OM=a=OB?cos30°=2×=,BM=b=OB×sin30°=2×=1,

∴k=ab=×1=故答案為.【點睛】本題考查的是反比例函數綜合題反比例函數圖象上點的坐標特征,根據題意作出輔助線構造出直角三角形,根據直角三角函數求得B的坐標是解題的關鍵.16、【解析】試題分析:列舉出所有情況,看所求的情況占總情況的多少即可.共有正反,正正,反正,反反4種可能,則2次拋擲的結果都是正面朝上的概率為.故答案為.考點:概率公式.17、5【分析】聯立兩函數解析式求出交點坐標,得出m,n的值,即可解決本題.【詳解】解:聯立兩函數解析式:,解得:或,當時,,當時,,綜上,5,故答案為5.【點睛】本題是對反比例函數和一次函數的綜合考查,熟練掌握反比例函數及解一元二次方程知識是解決本題的關鍵.18、3【分析】根據同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=2.5尺,∴,解得x=3(尺).故答案為:3.【點睛】本題考查的是同一時刻物高與影長成正比,在解題時注意單位要統一.三、解答題(共78分)19、(1)a=5時,y1的值是1050;(2)y2=﹣2b2+28b+960;(3)每件襯衫下降11元時,兩家分店一天的盈利和最大,最大是2244元.【分析】(1)根據題意,可以寫出y1與a的函數關系式,然后將a=5代入函數解析式,即可求得相應的y1值;(2)根據題意,可以寫出y2關于b的函數表達式;(3)根據題意可以寫出利潤與所降價格的函數關系式,然后利用二次函數的性質即可得到每件襯衫下降多少元時,兩家分店一天的盈利和最大,最大是多少元.【詳解】解:(1)由題意可得,y1=(40﹣a)(20+2a),當a=5時,y1=(40﹣5)×(20+2×5)=1050,即當a=5時,y1的值是1050;(2)由題意可得,y2=(30﹣b)(32+2b)=﹣2b2+28b+960,即y2關于b的函數表達式為y2=﹣2b2+28b+960;(3)設兩家下降的價格都為x元,兩家的盈利和為w元,w=(40﹣x)(20+2x)+(﹣2x2+28x+960)=﹣4x2+88x+1760=﹣4(x﹣11)2+2244,∴當x=11時,w取得最大值,此時w=2244,答:每件襯衫下降11元時,兩家分店一天的盈利和最大,最大是2244元.【點睛】本題考查二次函數的應用,解答本題的關鍵是明確題意,寫出相應的函數關系式,利用二次函數的性質解答.20、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉化得到AM=BN,設點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側,∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點的橫坐標相同,且BH=MH,∵M是拋物線上一點,∴可設點M的坐標為(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴點N的橫坐標為﹣4,可設直線AC:y=kx﹣3,則0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,當x=﹣4時,y=﹣(﹣4)﹣3=1,∴點N的坐標為(﹣4,1).【點睛】本題主要考查二次函數的圖象與性質,還涉及到全等三角形的判定及其性質、三角形面積公式等知識點,綜合性較強,解題的關鍵是熟練掌握二次函數的圖象與性質.21、6.4m【分析】由CD∥EF∥AB得可以得到△CDF∽△ABF,△ABG∽△EFG,故,,證,進一步得,求出BD,再得;【詳解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴∴BD=9,BF=9+3=12∴解得,AB=6.4m因此,路燈桿AB的高度6.4m.【點睛】考核知識點:相似三角形的判定和性質.理解相似三角形判定是關鍵.22、(1)證明見解析;(2).【分析】(1)連接,易得,由,易得,等量代換得,利用平行線的判定得,由切線的性質得,得出結論;(2)連接,利用(1)的結論得,易得,得出,利用扇形的面積公式和三角形的面積公式得出結論.【詳解】(1)證明:連接,,,∵AB=AC,∴∠ABC=∠ACB.∴∠ODB=∠ACB,∴OD∥AC.∵DF是⊙O的切線,∴DF⊥OD.∴DF⊥AC.(2)連結OE,∵DF⊥AC,∠CDF=1.5°.∴∠ABC=∠ACB=2.5°,∴∠BAC=45°.∵OA=OE,∴∠AOE=90°.的半徑為4,,,.【點睛】本題主要考查了切線的性質,扇形的面積與三角形的面積公式,圓周角定理等,作出適當的輔助線,利用切線性質和圓周角定理,數形結合是解答此題的關鍵.23、(1)點的坐標為;(2)點的坐標為;(3)點的坐標為.【分析】(1)過點作軸于根據已知條件可得出AD=6,再直角三角形ADG中可求出DG,AG的長,即可確定點D的坐標.(2)過點作軸于于可得出,根據勾股定理得出AE的長為10,再利用面積公式求出DH,從而求出OG,DG的長,得出答案(3)連接,作軸于G,由旋轉性質得到,從而可證,繼而可得出結論.【詳解】解:(1)過點作軸于,如圖①所示:點,點.,以點為中心,順時針旋轉矩形,得到矩形,,在中,,,點的坐標為;(2)過點作軸于于,如圖②所示:則,,,,,,,點的坐標為;(3)連接,作軸于G,如圖③所示:由旋轉的性質得:,,,,,,在和中,,,,,點的坐標為.【點睛】本題考查的知識點是坐標系內矩形的旋轉問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論