河南聚焦2022-2023學年九年級數學第一學期期末質量檢測試題含解析_第1頁
河南聚焦2022-2023學年九年級數學第一學期期末質量檢測試題含解析_第2頁
河南聚焦2022-2023學年九年級數學第一學期期末質量檢測試題含解析_第3頁
河南聚焦2022-2023學年九年級數學第一學期期末質量檢測試題含解析_第4頁
河南聚焦2022-2023學年九年級數學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖所示,圖中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.我市參加教師資格考試的人數逐年增加,據有關部門統計,2017年約為10萬人次,2019年約為18.8萬人次,設考試人數年均增長率為x,則下列方程中正確的是A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.83.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.324.平移拋物線y=﹣(x﹣1)(x+3),下列哪種平移方法不能使平移后的拋物線經過原點()A.向左平移1個單位 B.向上平移3個單位C.向右平移3個單位 D.向下平移3個單位5.某藥品經過兩次降價,每瓶零售價由168元降為108元,已知兩次降價的百分率相同,設每次降價的百分率為x,根據題意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1086.如圖,在中,,且DE分別交AB,AC于點D,E,若,則△和△的面積之比等于()A. B. C. D.7.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)8.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.9.張華同學的身高為米,某一時刻他在陽光下的影長為米,同時與他鄰近的一棵樹的影長為米,則這棵樹的高為()A.米 B.米 C.米 D.米10.如圖,在△ABC中,∠BAC=65°,將△ABC繞點A逆時針旋轉,得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'的度數為()A.65° B.50° C.80° D.130°二、填空題(每小題3分,共24分)11.如圖,正方形中,點為射線上一點,,交的延長線于點,若,則______12.如圖,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC繞邊AB所在直線旋轉一周,則所得幾何體的表面積為________(結果保留π).13.如圖,在平面直角坐標系中,已知?OABC的頂點坐標分別是O(0,0),A(3,0),B(4,2),C(1,2),以坐標原點O為位似中心,將?OABC放大3倍,得到?ODEF,則點E的坐標是_____.14.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結果保留根號)15.已知三點A(0,0),B(5,12),C(14,0),則△ABC內心的坐標為____.16.如圖,AB是⊙O的直徑,C、D為⊙O上的點,P為圓外一點,PC、PD均與圓相切,設∠A+∠B=130°,∠CPD=β,則β=_____.17.如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,ΔPEF、ΔPDC、ΔPAB的面積分別為S、S1、S1.若S=1,則S1+S1=.18.圓心角為,半徑為2的扇形的弧長是_______.三、解答題(共66分)19.(10分)某小區為改善生態環境,實行生活垃圾的分類處理,將生活垃圾分成三類:廚房垃圾、可回收垃圾和其他垃圾,分別記為,并且設置了相應的垃圾箱“廚房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為.(1)為了了解居民生活垃圾分類投放的情況,現隨機抽取了小區三類垃圾箱中總共噸生活垃圾,數據統計如下圖(單位:噸):請根據以上信息,估計“廚房垃圾”投放正確的概率;(2)若將三類垃圾隨機投入三類垃圾箱,請用畫樹狀圖或列表格的方法求出垃圾投放正確的概率.20.(6分)已知二次函數與軸交于、(在的左側)與軸交于點,連接、.(1)如圖1,點是直線上方拋物線上一點,當面積最大時,點分別為軸上的動點,連接、、,求的周長最小值;(2)如圖2,點關于軸的對稱點為點,將拋物線沿射線的方向平移得到新的拋物線,使得交軸于點(在的左側).將繞點順時針旋轉至.拋物線的對稱軸上有—動點,坐標系內是否存在一點,使得以、、、為頂點的四邊形是菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.21.(6分)如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(﹣2,0).(1)求拋物線的解析式及它的對稱軸方程;(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;(3)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.22.(8分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.23.(8分)已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF相交于點G.(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:.(2)如圖②,若四邊形ABCD是平行四邊形,要使成立,完成下列探究過程:要使,轉化成,顯然△DEA與△CFD不相似,考慮,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立時,∠B與∠EGC應該滿足的關系是________.(3)如圖③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接寫出結果)24.(8分)已知關于的方程:.(1)求證:不論取何實數,該方程都有兩個不相等的實數根.(2)設方程的兩根為,,若,求的值.25.(10分)把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知EF=CD=16cm,請求出球的半徑.26.(10分)如圖,在△ABC中,AB=AC,CD是AB邊上的中線,延長AB到點E,使BE=AB,連接CE.求證:CD=CE.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據軸對稱圖形和中心對稱圖形的定義(軸對稱圖形是沿某條直線對折,對折的兩部分能夠完全重合的圖形,中心對稱圖形是繞著某一點旋轉后能與自身重合的圖形)判斷即可.【詳解】解:A選項是中心對稱圖形但不是軸對稱圖形,A不符合題意;B選項是軸對稱圖形但不是中心對稱圖形,B不符合題意;C選項既是軸對稱圖形又是中心對稱圖形,C符合題意;D選項既不是軸對稱圖形又不是中心對稱圖形.故選:C.【點睛】本題考查了軸對稱圖形與中心對稱圖形,熟練掌握軸對稱圖形與中心對稱圖形的判斷方法是解題的關鍵.2、C【分析】根據增長率的計算公式:增長前的數量×(1+增長率)增長次數=增長后數量,從而得出答案.【詳解】根據題意可得方程為:10(1+x)2=18.8,故選:C.【點睛】本題主要考查的是一元二次方程的應用,屬于基礎題型.解決這個問題的關鍵就是明確基本的計算公式.3、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.4、B【分析】先將拋物線解析式轉化為頂點式,然后根據頂點坐標的平移規律即可解答.【詳解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1個單位后的解析式為:y=-(x+2)2+4,當x=0時,y=0,即該拋物線經過原點,故本選項不符合題意;B、向上平移3個單位后的解析式為:y=-(x+1)2+7,當x=0時,y=3,即該拋物線不經過原點,故本選項符合題意;C、向右平移3個單位后的解析式為:y=-(x-2)2+4,當x=0時,y=0,即該拋物線經過原點,故本選項不符合題意.;D、向下平移3個單位后的解析式為:y=-(x+1)2+1,當x=0時,y=0,即該拋物線經過原點,故本選項不符合題意.【點睛】本題考查了二次函數圖像的平移,函數圖像平移規律:上移加,下移減,左移加,右移減.5、A【分析】設每次降價的百分率為x,根據降價后的價格=降價前的價格(1-降價的百分率),則第一次降價后的價格是168(1-x),第二次后的價格是168(1-x)2,據此即可列方程求解.【詳解】設每次降價的百分率為x,根據題意得:168(1-x)2=1.故選A.【點睛】此題主要考查了一元二次方程的應用,關鍵是根據題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關系,列出方程即可.6、B【解析】由DE∥BC,利用“兩直線平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,進而可得出△ADE∽△ABC,再利用相似三角形的面積比等于相似比的平方即可求出結論.【詳解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故選B.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.7、A【分析】直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.8、C【分析】設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據全等三角形對應角相等∠DAE=∠B′AE,再根據旋轉角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉的性質,正方形的性質,全等三角形判定與性質,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.9、A【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體、影子、經過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】解:據相同時刻的物高與影長成比例,

設這棵樹的高度為xm,

則可列比例為,,解得,x=3.1.

故選:A.【點睛】本題主要考查同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.10、B【分析】根據平行線的性質可得,然后根據旋轉的性質可得,,根據等邊對等角可得,利用三角形的內角和定理求出,根據等式的基本性質可得,從而求出結論.【詳解】解:∵∠BAC=65°,∥AB∴由旋轉的性質可得,∴,∴,∴故選B.【點睛】此題考查的是平行線的性質、旋轉的性質和等腰三角形的性質,掌握平行線的性質、旋轉的性質和等邊對等角是解決此題的關鍵.二、填空題(每小題3分,共24分)11、【分析】連接AC交BD于O,作FG⊥BE于G,證出△BFG是等腰直角三角形,得出BG=FG=BF=,由三角形的外角性質得出∠AED=30°,由直角三角形的性質得出OE=OA,求出∠FEG=60°,∠EFG=30°,進而求出OA的值,即可得出答案.【詳解】連接AC交BD于O,作FG⊥BE于G,如圖所示則∠BGF=∠EGF=90°∵四邊形ABCD是正方形∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°∴△BFG是等腰直角三角形∴BG=FG=BF=∵∠ADB=∠EAD+∠AED,∠EAD=15°∴∠AED=30°∴OE=OA∵EF⊥AE∴∠FEG=60°∴∠EFG=30°∴EG=FG=∴BE=BG+EG=∵OA+AO=解得:OA=∴AB=OA=故答案為【點睛】本題考查了正方形和等腰直角三角形的性質,綜合性較強,需要熟練掌握相關性質.12、【分析】過點C作CD⊥AB于點D,在Rt△ABC中,求出AB長,繼而求得CD長,繼而根據扇形面積公式進行求解即可.【詳解】過點C作CD⊥AB于點D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD為半徑的圓的周長是:4π.故直線旋轉一周則所得的幾何體得表面積是:2××4π×=.故答案為.【點睛】本題考查了圓錐的計算,正確求出旋轉后圓錐的底面圓半徑是解題的關鍵.13、(12,6)或(-12,-6)【分析】根據平行四邊形的性質、位似變換的性質計算,得到答案.【詳解】以坐標原點O為位似中心,將?OABC放大3倍,得到?ODEF∵點B的坐標為(4,2),且點B的對應點為點E∴點E的坐標為(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案為:(12,6)或(-12,-6).【點睛】本題考查了位似和平行四邊形的知識;求解的關鍵是熟練掌握位似的性質,從而完成求解.14、40【解析】利用等腰直角三角形的性質得出AB=AD,再利用銳角三角函數關系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點睛】此題主要考查了解直角三角形的應用,正確得出tan∠CDA=tan30°=是解題關鍵.15、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標,即可得出答案.【詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設⊙P的半徑為r,根據三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標為(6,4),故答案為:(6,4).【點睛】本題主要考查勾股定理、三角形的內切圓半徑公式及切線長定理,根據三角形的內切圓半徑公式及切線長定理求出點P的坐標是解題的關鍵.16、100°【分析】連結OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據OB=OC,OD=OA,可得∠BOC=180°?2∠B,∠AOD=180°?2∠A,則可得出與β的關系式.進而可求出β的度數.【詳解】連結OC,OD,∵PC、PD均與圓相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案為:100°.【點睛】本題利用了切線的性質,圓周角定理,四邊形的內角和為360度求解,解題的關鍵是熟練掌握切線的性質.17、2.【詳解】∵E、F分別為PB、PC的中點,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四邊形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四邊形ABCD=8s=2.18、【分析】利用弧長公式進行計算.【詳解】解:故答案為:【點睛】本題考查弧長的計算,掌握公式正確計算是本題的解題關鍵.三、解答題(共66分)19、(1);(2).【分析】(1)利用頻率估計概率,通過計算“廚房垃圾”投放正確的百分比估計“廚房垃圾”投放正確的概率.(2)先畫樹狀圖展示所有9種可能的結果數,再找出垃圾投放正確的結果數,然后根據概率公式計算;【詳解】解:(1)∵∴估計“廚房垃圾”投放正確的概率為;畫樹狀圖如下∵共有種等可能的結果數,其中垃圾投放正確的結果數為,∴垃圾投放正確的概率為故答案是:(1);(2)【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出,再從中選出符合事件的結果數目,求出概率.20、(1);(1)存在,理由見解析;,,,,【分析】(1)利用待定系數法求出A,B,C的坐標,如圖1中,作PQ∥y軸交BC于Q,設P,則Q,構建二次函數確定點P的坐標,作P關于y軸的對稱點P1(-2,6),作P關于x軸的對稱點P1(2,-6),的周長最小,其周長等于線段的長,由此即可解決問題.(1)首先求出平移后的拋物線的解析式,確定點H,點C′的坐標,分三種情形,當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1.當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2.當OC′是菱形的對角線時,分別求解即可解決問題.【詳解】解:(1)如圖,,過點作軸平行線,交線段于點,設,=-(m1-2)1+2,∵,∴m=2時,△PBC的面積最大,此時P(2,6)作點關于軸的對稱點,點關于軸的對稱點,連接交軸、軸分別為,此時的周長最小,其周長等于線段的長;∵,∴.(1)如圖,∵E(0,-2),平移后的拋物線經過E,B,∴拋物線的解析式為y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的拋物線的解析式為y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB繞點H順時針旋轉90°至△C′HB′,∴C′(6,1),當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵點C′向左平移一個單位,向下平移得到S1,∴點O向左平移一個單位,向下平移個單位得到K1,∴K1(-1,-),同法可得K1(-1,),當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),當OC′是菱形的對角線時,設S5(5,m),則有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵點O向右平移5個單位,向下平移5個單位得到S5,∴C′向上平移5個單位,向左平移5個單位得到K5,∴K5(1,7),綜上所述,滿足條件的點K的坐標為(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).【點睛】本題屬于二次函數綜合題,考查了二次函數的性質,平移變換,翻折變換,菱形的判定和性質,軸對稱最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,學會用分類討論的思想思考問題.21、(1)y=-x2+x+2,x=1;(2)C(0,2);y=?x+2;(1)Q1(1,0),Q2(1,2+),Q1(1,2-).【分析】(1)利用待定系數法求出拋物線解析式,利用配方法或利用公式x=?求出對稱軸方程;(2)在拋物線解析式中,令x=0,可求出點C坐標;令y=0,可求出點B坐標.再利用待定系數法求出直線BD的解析式;(1)本問為存在型問題.若△ACQ為等腰三角形,則有三種可能的情形,需要分類討論,逐一計算,避免漏解.【詳解】解:(1)∵拋物線y=-x2+bx+2的圖象經過點A(-2,0),∴-×(-2)2+b×(-2)+2=0,解得:b=,∴拋物線解析式為y=-x2+x+2,又∵y=-x2+x+2=-(x-1)2+,∴對稱軸方程為:x=1.(2)在y=-x2+x+2中,令x=0,得y=2,∴C(0,2);令y=0,即-x2+x+2=0,整理得x2-6x-16=0,解得:x=8或x=-2,∴A(-2,0),B(8,0).設直線BC的解析式為y=kx+b,把B(8,0),C(0,2)的坐標分別代入解析式,得:,解得,∴直線BC的解析式為:y=?x+2.∵拋物線的對稱軸方程為:x=1,可設點Q(1,t),則可求得:AC=,AQ=,CQ=.i)當AQ=CQ時,有=,25+t2=t2-8t+16+9,解得t=0,∴Q1(1,0);ii)當AC=AQ時,有t2=-5,此方程無實數根,∴此時△ACQ不能構成等腰三角形;iii)當AC=CQ時,有,整理得:t2-8t+5=0,解得:t=2±,∴點Q坐標為:Q2(1,2+),Q1(1,2-).綜上所述,存在點Q,使△ACQ為等腰三角形,點Q的坐標為:Q1(1,0),Q2(1,2+),Q1(1,2-).【點睛】本題考查二次函數綜合題,綜合性較強,有一定難度,注意分類討論是本題的解題關鍵.22、(1)60,90;(2)見解析;(3)300人【解析】(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數,繼而補全條形統計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統計圖得:(3)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人.【點睛】本題考查了條形統計圖與扇形統計圖,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖的相關知識點.23、(1)證明見解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).【分析】(1)根據矩形性質得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;(2)當∠B+∠EGC=180°時,成立,分別證明即可;(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x?2)2+(x)2=22,求出CN=,證出△AED∽△NFC,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴;(2)當∠B+∠EGC=180°時,.要使,轉化成,顯然△DEA與△CFD不相似,考慮,需要△DEA∽△DFG,只需∠A=∠DGF;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠CDF.當∠B+∠EGC=180°時:∵四邊形ABCD是平行四邊形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴,∴,∴,即當∠B+∠EGC=180°時,成立;(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,

∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四邊形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論