廣東省東莞市中學堂六校2022-2023學年九年級數學第一學期期末質量跟蹤監視模擬試題含解析_第1頁
廣東省東莞市中學堂六校2022-2023學年九年級數學第一學期期末質量跟蹤監視模擬試題含解析_第2頁
廣東省東莞市中學堂六校2022-2023學年九年級數學第一學期期末質量跟蹤監視模擬試題含解析_第3頁
廣東省東莞市中學堂六校2022-2023學年九年級數學第一學期期末質量跟蹤監視模擬試題含解析_第4頁
廣東省東莞市中學堂六校2022-2023學年九年級數學第一學期期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.不透明袋子中有個紅球和個藍球,這些球除顏色外無其他差別,從袋子中隨機取出個球是紅球的概率是()A. B. C. D.2.下列說法正確的是()A.等弧所對的圓心角相等B.三角形的外心到這個三角形的三邊距離相等C.經過三點可以作一個圓D.相等的圓心角所對的弧相等3.平行四邊形四個內角的角平分線所圍成的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形4.在下列交通標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.﹣3的絕對值是()A.﹣3 B.3 C.- D.6.若拋物線y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三點,則y1,y2,y3的大小關系為()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y17.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.68.下列四個圖形分別是四屆國際數學家大會的會標,其中不屬于中心對稱圖形的是()A. B. C. D.9.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.10.拋物線y=﹣3(x﹣1)2+3的頂點坐標是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)二、填空題(每小題3分,共24分)11.如圖,在正方形ABCD中,AB=a,點E,F在對角線BD上,且∠ECF=∠ABD,將△BCE繞點C旋轉一定角度后,得到△DCG,連接FG.則下列結論:①∠FCG=∠CDG;②△CEF的面積等于;③FC平分∠BFG;④BE2+DF2=EF2;其中正確的結論是_____.(填寫所有正確結論的序號)12.函數和在第一象限內的圖象如圖,點是的圖象上一動點,軸于點,交的圖象于點;軸于點,交的圖象于點,則四邊形的面積為______.13.河堤橫截面如圖所示,堤高為4米,迎水坡的坡比為1:(坡比=),那么的長度為____________米.14.如圖,AE,AD,BC分別切⊙O于點E、D和點F,若AD=8cm,則△ABC的周長為_______cm.15.在平面直角坐標系中,點(4,-5)關于原點的對稱點的坐標是________.16.某中學去年舉辦競賽,頒發一二三等獎各若干名,獲獎人數依次增加,各獲獎學生獲得的獎品價值依次減少(獎品單價都是整數元),其中有3人獲得一等獎,每人獲得的獎品價值34元,二等獎的獎品單價是5的倍數,獲得三等獎的人數不超過10人,并且獲得二三等獎的人數之和與二等獎獎品的單價相同.今年又舉辦了競賽,獲得一二三等獎的人數比去年分別增加了1人、2人、3人,購買對應獎品時發現單價分別上漲了6元、3元、2元.這樣,今年購買獎品的總費用比去年增加了159元.那么去年購買獎品一共花了__________元.17.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.18.分解因式:x3y﹣xy3=_____.三、解答題(共66分)19.(10分)如圖,拋物線過原點,且與軸交于點.(1)求拋物線的解析式及頂點的坐標;(2)已知為拋物線上一點,連接,,,求的值;(3)在第一象限的拋物線上是否存在一點,過點作軸于點,使以,,三點為頂點的三角形與相似,若存在,求出滿足條件的點的坐標;若不存在,請說明理由.20.(6分)已知如圖,拋物線y=ax2+bx+3與x軸交于點A(3,0),B(﹣1,0),與y軸交于點C,連接AC,點P是直線AC上方的拋物線上一動點(異于點A,C),過點P作PE⊥x軸,垂足為E,PE與AC相交于點D,連接AP.(1)求點C的坐標;(2)求拋物線的解析式;(3)①求直線AC的解析式;②是否存在點P,使得△PAD的面積等于△DAE的面積,若存在,求出點P的坐標,若不存在,請說明理由.21.(6分)先化簡:,再求代數式的值,其中是方程的一個根.22.(8分)某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環保社團成員在校園內隨機抽取了部分學生進行問卷調查將他們的得分按優秀、良好、合格、不合格四個等級進行統計,并繪制了如下不完整的統計表和條形統計圖.請根據圖表信息,解答下列問題:本次調查隨機抽取了____名學生:表中;補全條形統計圖:若全校有名學生,請你估計該校掌握垃圾分類知識達到“優秀"和“良好”等級的學生共有多少人23.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.(1)求拋物線的解析式和直線AC的解析式;(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標;(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.24.(8分)(1)如圖,已知AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點.連接OM,以O為圓心,OM為半徑作小圓⊙O.判斷CD與小圓⊙O的位置關系,并說明理由;(2)已知⊙O,線段MN,P是⊙O外一點.求作射線PQ,使PQ被⊙O截得的弦長等于MN.(不寫作法,但保留作圖痕跡)25.(10分)如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數關系式為h=20t-(t≥0).回答問題:(1)小球的飛行高度能否達到19.5m;(2)小球從最高點到落地需要多少時間?26.(10分)在矩形中,,,是射線上的點,連接,將沿直線翻折得.(1)如圖①,點恰好在上,求證:∽;(2)如圖②,點在矩形內,連接,若,求的面積;(3)若以點、、為頂點的三角形是直角三角形,則的長為.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據紅球的個數以及球的總個數,直接利用概率公式求解即可.【詳解】因為共有個球,紅球有個,所以,取出紅球的概率為,故選A.【點睛】本題考查了簡單的概率計算,正確把握概率的計算公式是解題的關鍵.2、A【解析】試題分析:A.等弧所對的圓心角相等,所以A選項正確;B.三角形的外心到這個三角形的三個頂點的距離相等,所以B選項錯誤;C.經過不共線的三點可以作一個圓,所以C選項錯誤;D.在同圓或等圓中,相等的圓心角所對的弧相等,所以D選項錯誤.故選C.考點:1.確定圓的條件;2.圓心角、弧、弦的關系;3.三角形的外接圓與外心.3、B【解析】分析:作出圖形,根據平行四邊形的鄰角互補以及角平分線的定義求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根據四個角都是直角的四邊形是矩形解答.詳解:∵四邊形ABCD是平行四邊形,

∴∠BAD+∠ABC=180°,

∵AE、BE分別是∠BAD、∠ABC的平分線,

∴∠BAE+∠ABE=∠BAD+∠ABC=90°,

∴∠FEH=90°,

同理可求∠F=90°,∠FGH=90°,∠H=90°,

∴四邊形EFGH是矩形.故選B.點睛:本題考查了矩形的判定,平行四邊形的鄰角互補,角平分線的定義,注意整體思想的利用.4、C【分析】根據軸對稱圖形和中心對稱圖形的定義進行分析即可.【詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項錯誤.故選C.【點睛】考點:1、中心對稱圖形;2、軸對稱圖形5、B【分析】根據負數的絕對值是它的相反數,可得出答案.【詳解】根據絕對值的性質得:|-1|=1.故選B.【點睛】本題考查絕對值的性質,需要掌握非負數的絕對值是它本身,負數的絕對值是它的相反數.6、C【分析】根據拋物線y=ax2+2ax+4(a<0)可知該拋物線開口向下,可以求得拋物線的對稱軸,又因為拋物線具有對稱性,從而可以解答本題.【詳解】解:∵拋物線y=ax2+2ax+4(a<0),∴對稱軸為:x=,∴當x<?1時,y隨x的增大而增大,當x>?1時,y隨x的增大而減小,∵A(?,y1),B(?,y2),C(,y3)在拋物線上,且?<?,?0.5<,∴y3<y1<y2,故選:C.【點睛】本題考查二次函數的性質,解題的關鍵是明確二次函數具有對稱性,在對稱軸的兩側它的增減性不一樣.7、D【分析】連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.8、A【分析】根據把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項正確;B、是中心對稱圖形,故此選項錯誤;C、是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項錯誤;故選A.【點睛】此題主要考查了中心對稱圖形的定義,判斷中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.9、A【分析】根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.10、D【分析】直接根據頂點式的特點求頂點坐標.【詳解】解:∵y=﹣3(x﹣1)2+3是拋物線的頂點式,∴頂點坐標為(1,3).故選:D.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標為(h,k).二、填空題(每小題3分,共24分)11、①③④【分析】由正方形的性質可得AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,由旋轉的性質可得∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,由SAS可證△ECF≌△GCF,可得EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,∴∠ECF=∠ABD=45°,∴∠BCE+∠FCD=45°,∵將△BCE繞點C旋轉一定角度后,得到△DCG,∴∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,∴∠FCG=∠ECF=45°,∴∠FCG=∠CDG=45°,故①正確,∵EC=CG,∠FCG=∠ECF,FC=FC,∴△ECF≌△GCF(SAS)∴EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,∴CF平分∠BFG,故③正確,∵∠BDG=∠BDC+∠CDG=90°,∴DG2+DF2=FG2,∴BE2+DF2=EF2,故④正確,∵DF+DG>FG,∴BE+DF>EF,∴S△CEF<S△BEC+S△DFC,∴△CEF的面積<S△BCD=,故②錯誤;故答案為:①③④【點睛】本題是一道關于旋轉的綜合題目,要會利用數形結合的思想把代數和幾何圖形結合起來,考查了旋轉的性質、正方形的性質、全等三角形的判定及性質等知識點.12、3【解析】根據反比例函數系數k的幾何意義可分別求得△OBD、△OAC、矩形PDOC的面積,據此可求出四邊形PAOB的面積.【詳解】解:如圖,

∵A、B是反比函數上的點,

∴S△OBD=S△OAC=,∵P是反比例函數上的點,

∴S矩形PDOC=4,

∴S四邊形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【點睛】本題考查的是反比例函數綜合題,熟知反比例函數中系數k的幾何意義是解答此題的關鍵.13、8【分析】在Rt△ABC中,根據坡面AB的坡比以及BC的值,求出AC的值,再通過解直角三角形即可求出斜面AB的長.【詳解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比為1:,∴BC:AC=1:,∴AC=?BC=4(米),∴(米)【點睛】本題考查了解直角三角形的應用----坡度坡角問題,熟練運用勾股定理是解答本題的關鍵.14、16【解析】∵AE,AD,BC分別切O于點E.

D和點F,∴AD=AC,DB=BF,CE=CF,∴AB+BC+AC=AB+BF+CF+AC=AB+BD+CE+AC=AD+AE=2AD=16cm,故答案為:16.15、(-4,5)【分析】根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】解:點(4,-5)關于原點的對稱點的坐標是(-4,5),故答案為:(-4,5).【點睛】此題主要考查了關于原點對稱的點的坐標特點,關鍵是掌握點的坐標的變化規律.16、257【分析】根據獲獎人數依次增加,獲得二三等獎的人數之和與二等獎獎品的單價相同,以及二等獎獎品單價為5的倍數,可知二等獎的單價為10或15,分別討論即可得出答案.【詳解】設二等獎人數為m,三等獎人數為n,二等獎單價為a,三等獎單價為b,根據題意列表分析如下:一等獎二等獎三等獎去年獲獎人數3mn獎品單價34ab今年獲獎人數3+1=4m+2n+3獎品單價34+6=40a+3b+2∵今年購買獎品的總費用比去年增加了159元∴整理得∵,,為5的倍數∴的值為10或15當時,,代入得,解得不符合題意,舍去;當時,有3種情況:①,,代入得,解得,符合題意此時去年購買獎品一共花費元②,,代入得,解得,不符合題意,舍去③,,代入得,解得,不符合題意,舍去綜上可得,去年購買獎品一共花費257元故答案為:257.【點睛】本題考查了方程與不等式的綜合應用,難度較大,根據題意推出的取值,然后分類討論是解題的關鍵.17、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據反比例函數系數k的幾何意義,可知k=6,∴反比例函數的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數系數k的幾何意義.18、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再對余下的多項式運用平方差公式繼續分解.詳解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).點睛:本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式,要首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共66分)19、(1)拋物線的解析式為;頂點的坐標為;(2)3;(3)點的坐標為或.【分析】(1)用待定系數法即可求出拋物線的解析式,進而即可求出頂點坐標;(2)先將點C的橫坐標代入拋物線的解析式中求出縱坐標,根據B,C的坐標得出,,從而有,最后利用求解即可;(3)設為.由于,所以當以,,三點為頂點的三角形與相似時,分兩種情況:或,分別建立方程計算即可.【詳解】解:(1)∵拋物線過原點,且與軸交于點,∴,解得.∴拋物線的解析式為.∵,∴頂點的坐標為.(2)∵在拋物線上,∴.作軸于,作軸于,則,,∴,.∴.∵,.∴.(3)假設存在.設點的橫坐標為,則為.由于,所以當以,,三點為頂點的三角形與相似時,有或∴或.解得或.∴存在點,使以,,三點為頂點的三角形與相似.∴點的坐標為或.【點睛】本題主要考查二次函數與幾何綜合,掌握二次函數的圖象和性質,相似三角形的性質是解題的關鍵.20、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②當點P的坐標為(1,4)時,△PAD的面積等于△DAE的面積.【分析】(1)將代入二次函數解析式即可得點C的坐標;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出拋物線的解析式;(3)①設直線直線AC的解析式為,把A(3,0),C代入即可得直線AC的解析式;②存在點P,使得△PAD的面積等于△DAE的面積;設點P(x,﹣x2+2x+3)則點D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根據S△PAD=S△DAE時,即可得PD=DE,即可得出結論.【詳解】解:(1)由y=ax2+bx+3,令∴點C的坐標為(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(3)①設直線直線AC的解析式為,把A(3,0),C代入得,解得,∴直線AC的解析式為;②存在點P,使得△PAD的面積等于△DAE的面積,理由如下:設點P(x,﹣x2+2x+3)則點D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,當S△PAD=S△DAE時,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴當點P的坐標為(1,4)時,△PAD的面積等于△DAE的面積.【點睛】本題考查了用待定系數法求解析式,二次函數的綜合,掌握知識點是解題關鍵.21、;1.【分析】首先對括號內的分式進行通分,然后把除法轉化為乘法即可化簡,最后整體代值計算.【詳解】解:,,,,;∵是方程的一個根,∴,∴,∴,∴原式=【點睛】本題考查了分式的化簡求值和一元二次方程的根,熟知整體代入是解答此題關鍵.22、(1)50,20,0.12;(2)詳見解析;(3)1.【分析】(1)根據總數×頻率=頻數,即可得到答案;(2)根據統計表的數據,即可畫出條形統計圖;(3)根據全??側藬怠吝_到“優秀"和“良好”等級的學生的百分比,即可得到答案.【詳解】本次調查隨機抽取了名學生,.故答案為:;補全條形統計圖如圖所示:(人),答:該校掌握垃圾分類知識達到“優秀"和“良好”等級的學生共有1多少人.【點睛】本題主要考查頻數統計表和條形統計圖,掌握統計表和條形統計圖的特征,是解題的關鍵.23、(1)拋物線解析式為y=﹣x2+2x+3;直線AC的解析式為y=3x+3;(2)點M的坐標為(0,3);(3)符合條件的點P的坐標為(,)或(,﹣),【解析】分析:(1)設交點式y=a(x+1)(x-3),展開得到-2a=2,然后求出a即可得到拋物線解析式;再確定C(0,3),然后利用待定系數法求直線AC的解析式;(2)利用二次函數的性質確定D的坐標為(1,4),作B點關于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(-3,0),利用兩點之間線段最短可判斷此時MB+MD的值最小,則此時△BDM的周長最小,然后求出直線DB′的解析式即可得到點M的坐標;(3)過點C作AC的垂線交拋物線于另一點P,如圖2,利用兩直線垂直一次項系數互為負倒數設直線PC的解析式為y=-x+b,把C點坐標代入求出b得到直線PC的解析式為y=-x+3,再解方程組得此時P點坐標;當過點A作AC的垂線交拋物線于另一點P時,利用同樣的方法可求出此時P點坐標.詳解:(1)設拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;當x=0時,y=﹣x2+2x+3=3,則C(0,3),設直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴頂點D的坐標為(1,4),作B點關于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此時MB+MD的值最小,而BD的值不變,∴此時△BDM的周長最小,易得直線DB′的解析式為y=x+3,當x=0時,y=x+3=3,∴點M的坐標為(0,3);(3)存在.過點C作AC的垂線交拋物線于另一點P,如圖2,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設為y=﹣x+b,把C(0,3)代入得b=3,∴直線PC的解析式為y=﹣x+3,解方程組,解得或,則此時P點坐標為(,);過點A作AC的垂線交拋物線于另一點P,直線PC的解析式可設為y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直線PC的解析式為y=﹣x﹣,解方程組,解得或,則此時P點坐標為(,﹣).綜上所述,符合條件的點P的坐標為(,)或(,﹣).點睛:本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征和二次函數的性質;會利用待定系數法求函數解析式,理解兩直線垂直時一次項系數的關系,通過解方程組求把兩函數的交點坐標;理解坐標與圖形性質,會運用兩點之間線段最短解決最短路徑問題;會運用分類討論的思想解決數學問題.24、(1)相切,證明見解析;(2)答案見解析【分析】(1)過點O作ON⊥CD,連接OA,OC,根據垂徑定理及其推論可得∠AMO=∠ONC=90°,AM=CN,從而求證△AOM≌△CON,從而判定CD與小圓O的位置關系;(2)在圓O上任取一點A,以A為圓心,MN為半徑畫弧,交圓O于點B,過點O做AB的垂線,交AB于點C,然后以點O為圓心,OC為半徑畫圓,連接PO,取PO的中點D,以點D為圓心,OD為半徑畫圓,交以OC為半徑的圓于點E,連接PE,交以OA為半徑的圓于F,H兩點,FH即為所求.【詳解】解:(1)過點O作ON⊥CD,連接OA,OC∵AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD與小圓O相切(2)如圖FH即為所求【點睛】本題考查垂徑定理及其推論,全等三角形的判定和性質,以及利用垂徑定理作圖,掌握相關知識靈活應用是本題的解題關鍵.25、(1)19.5m;(2)2s【分析】(1)根據拋物線解析式,先求出拋物線的定點,判斷小球最高飛行高度,從而判斷能否達到19.5m;(2)根據定點坐標知道,小球飛從地面飛行至最高點需要2s,根據二次函數的對稱性,可知從最高落在地面,也需要2s.【詳解】(1)h=20t-由二次函數可知:拋物線開口向下,且頂點坐標為(2,20),可知小球的飛行高度為h=20m>19.5m所以小球的飛行高度能否達到19.5m;(2)根據拋物線的對稱性可知,小球從最高點落到地面需要的時間與小球從地面上到最高點的時間相等.因為由二次函數的頂點坐標可知當t=2s時小球達到最高點,所以小球從最高點到落地需要2s.【點睛】本題考查二次函數的實際運用,解題關鍵是將二次函數轉化為頂點式,得出頂點坐標,然后分析求解.26、(1)見解析;(2)的面積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論