2025屆湖北省武漢市部分學校數學九上期末質量跟蹤監視試題含解析_第1頁
2025屆湖北省武漢市部分學校數學九上期末質量跟蹤監視試題含解析_第2頁
2025屆湖北省武漢市部分學校數學九上期末質量跟蹤監視試題含解析_第3頁
2025屆湖北省武漢市部分學校數學九上期末質量跟蹤監視試題含解析_第4頁
2025屆湖北省武漢市部分學校數學九上期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省武漢市部分學校數學九上期末質量跟蹤監視試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,是的直徑,點在上,,則的度數為()A. B. C. D.2.如圖,已知?ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延長線相交于G,下面結論:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正確的結論是()A.①②③④ B.①②③ C.①②④ D.②③④3.一組數據1,2,3,3,4,1.若添加一個數據3,則下列統計量中,發生變化的是()A.平均數 B.眾數 C.中位數 D.方差4.下列各式與是同類二次根式的是()A. B. C. D.5.如圖,在方格紙中,點A,B,C都在格點上,則tan∠ABC的值是()A.2 B. C. D.6.從長度分別為1,3,5,7的四條線段中任選三條作邊,能構成三角形的概率為()A. B. C. D.7.在Rt△ABC中,,如果∠A=,,那么線段AC的長可表示為().A.; B.; C.; D..8.如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上且A(﹣3,0),B(2,b),則正方形ABCD的面積是()A.20 B.16 C.34 D.259.如圖,直線a∥b∥c,直線m、n與這三條平行線分別交于點A、B、C和點D、E、F.若AB=3,BC=5,DF=12,則DE的值為()A. B.4 C. D.10.如圖,拋物線與直線交于,兩點,與直線交于點,將拋物線沿著射線方向平移個單位.在整個平移過程中,點經過的路程為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形,點D恰好在雙曲線上,則k值為_____.12.若函數是正比例函數,則__________.13.如圖,在中,,點為的中點.將繞點逆時針旋轉得到,其中點的運動路徑為,則圖中陰影部分的面積為______.14.已知點A(4,y1),B(,y2),C(-2,y3)都在二次函數y=(x-2)2-1的圖象上,則y1,y2,y3的大小關系是.15.請寫出一個符合以下兩個條件的反比例函數的表達式:___________________.①圖象位于第二、四象限;②如果過圖象上任意一點A作AB⊥x軸于點B,作AC⊥y軸于點C,那么得到的矩形ABOC的面積小于1.16.如圖,是某同學制作的一個圓錐形紙帽的示意圖,則圍成這個紙帽的紙的面積為______.17.將數12500000用科學計數法表示為__________.18.如圖,四邊形ABCD是⊙O的內接四邊形,若∠C=140°,則∠BOD=____°.三、解答題(共66分)19.(10分)已知拋物線y=x2+bx+c經過原點,對稱軸為直線x=1,求該拋物線的解析式.20.(6分)某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現以八年級(2)班作為樣本,對該班學生參加球類活動的情況進行統計,并繪制了如圖所示的不完整統計表和扇形統計圖:八年級(2)班參加球類活動人數情況統計表項目籃球足球乒乓球排球羽毛球人數a6576八年級(2)班學生參加球類活動人數情況扇形統計圖根據圖中提供的信息,解答下列問題:(1)a=,b=.(2)該校八年級學生共有600人,則該年級參加足球活動的人數約人;(3)該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.21.(6分)計算:2cos30°+(π﹣3.14)0﹣22.(8分)某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用長的籬笆圍成一個矩形花園(籬笆只圍、兩邊).(1)若圍成的花園面積為,求花園的邊長;(2)在點處有一顆樹與墻,的距離分別為和,要能將這棵樹圍在花園內(含邊界,不考慮樹的粗細),又使得花園面積有最大值,求此時花園的邊長.23.(8分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.(1)“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;(2)從中任意抽取1個球恰好是紅球的概率是;(3)學校決定在甲、乙兩名同學中選取一名作為學生代表發言,制定如下規則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規則公平嗎?請用列表法或畫樹狀圖法加以說明.24.(8分)閱讀材料,解答問題:觀察下列方程:①;②;③;…;(1)按此規律寫出關于x的第4個方程為,第n個方程為;(2)直接寫出第n個方程的解,并檢驗此解是否正確.25.(10分)如圖,已知正方形的邊長為,點是對角線上一點,連接,將線段繞點順時針旋轉至的位置,連接、.(1)求證:;(2)當點在什么位置時,的面積最大?并說明理由.26.(10分)自貢是“鹽之都,龍之鄉,燈之城”,文化底蘊深厚.為弘揚鄉土特色文化,某校就同學們對“自貢歷史文化”的了解程度進行隨機抽樣調查,將調查結果繪制成如下兩幅統計圖:⑴本次共調查名學生,條形統計圖中=;⑵若該校共有學生1200名,則該校約有名學生不了解“自貢歷史文化”;⑶調查結果中,該校九年級(2)班學生中了解程度為“很了解”的同學進行測試,發現其中共有四名同學相當優秀,它們是三名男生,一名女生,現準備從這四名同學中隨機抽取兩人去市里參加“自貢歷史文化”知識競賽,用樹狀圖或列表法,求恰好抽取一男生一女生的概率.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接AC,根據圓周角定理,分別求出∠ACB=90,∠ACD=20,即可求∠BCD的度數.【詳解】連接AC,

∵AB為⊙O的直徑,

∴∠ACB=90°,

∵∠AED=20°,

∴∠ACD=∠AED=20°,

∴∠BCD=∠ACB+∠ACD=90°+20°=110°,

故選:B.【點睛】本題考查的是圓周角定理:①直徑所對的圓周角為直角;②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、B【分析】根據已知及相似三角形的判定方法對各個結論進行分析從而得到最后答案.【詳解】∵∠DBC=45°,DE⊥BC∴∠BDE=45°,∴BE=DE由勾股定理得,DB=BE,∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵?ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正確的有①②③對于④無法證明.故選:B.【點睛】此題考查了相似三角形的判定和性質:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.相似三角形的對應邊成比例,對應角相等.3、D【解析】A.∵原平均數是:(1+2+3+3+4+1)÷6=3;添加一個數據3后的平均數是:(1+2+3+3+4+1+3)÷7=3;∴平均數不發生變化.B.∵原眾數是:3;添加一個數據3后的眾數是:3;∴眾數不發生變化;C.∵原中位數是:3;添加一個數據3后的中位數是:3;∴中位數不發生變化;D.∵原方差是:;添加一個數據3后的方差是:;∴方差發生了變化.故選D.點睛:本題主要考查的是眾數、中位數、方差、平均數的,熟練掌握相關概念和公式是解題的關鍵.4、A【分析】根據同類二次根式的概念即可求出答案.【詳解】解:(A)原式=2,故A與是同類二次根式;(B)原式=2,故B與不是同類二次根式;(C)原式=3,故C與不是同類二次根式;(D)原式=5,故D與不是同類二次根式;故選:A.【點睛】此題主要考查了同類二次根式的定義,正確化簡二次根式是解題關鍵.5、A【分析】根據直角三角形解決問題即可.【詳解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故選:A.【點睛】本題主要考查了解直角三角形,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.6、C【分析】從四條線段中任意選取三條,找出所有的可能,以及能構成三角形的情況數,即可求出所求的概率.【詳解】解:從四條線段中任意選取三條,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4種,

其中構成三角形的有3,5,7共1種,∴能構成三角形的概率為:,故選C.點睛:此題考查了列表法與樹狀圖法,以及三角形的三邊關系,用到的知識點為:概率=所求情況數與總情況數之比.7、B【分析】根據余弦函數是鄰邊比斜邊,可得答案.【詳解】解:由題意,得,,故選:.【點睛】本題考查了銳角三角函數的定義,利用余弦函數的定義是解題關鍵.8、C【分析】作BM⊥x軸于M.只要證明△DAO≌△ABM,推出OA=BM,AM=OD,由A(﹣3,0),B(2,b),推出OA=3,OM=2,推出OD=AM=5,再利用勾股定理求出AD即可解決問題.【詳解】解:作軸于.四邊形是正方形,,,,,,,在和中,,,,,,,,,,正方形的面積,故選:.【點睛】本題考查正方形的性質、坐標與圖形的性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線構造全等三角形解決問題,屬于中考??碱}型.9、C【分析】由,利用平行線分線段成比例可得DE與EF之比,再根據DF=12,可得答案.【詳解】,,,,,,故選C.【點睛】本題考查了平行線分線段成比例,牢記平行線分線段成比例定理及推論是解題的關鍵.10、B【分析】根據題意拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,可得平移后的頂點坐標.設向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a,令x=2,y=(a-)2+,由0≤a≤4,推出y的最大值和最小值,根據點D的縱坐標的變化情形,即可解決問題.【詳解】解:由題意,拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,∵拋物線=(x+1)2-1的頂點坐標為(-1,-1),設拋物線向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a令x=2,y=(3-a)2-1+a,∴y=(a-)2+,∵0≤a≤4∴y的最大值為8,最小值為,∵a=4時,y=2,∴8-2+2(2-)=故選:B【點睛】本題考查的是拋物線上的點在拋物線平移時經過的路程問題,解決問題的關鍵是在平移過程中點D的移動規律.二、填空題(每小題3分,共24分)11、1【解析】作DH⊥x軸于H,如圖,

當y=0時,-3x+3=0,解得x=1,則A(1,0),

當x=0時,y=-3x+3=3,則B(0,3),

∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=90°,

∴∠BAO+∠DAH=90°,

而∠BAO+∠ABO=90°,

∴∠ABO=∠DAH,

在△ABO和△DAH中∴△ABO≌△DAH,

∴AH=OB=3,DH=OA=1,

∴D點坐標為(1,1),

∵頂點D恰好落在雙曲線y=上,

∴a=1×1=1.故答案是:1.12、【分析】根據正比例函數的定義即可得出答案.【詳解】∵函數是正比例函數∴-a+1=0解得:a=1故答案為1.【點睛】本題考查的是正比例函數,屬于基礎題型,正比例函數的表達式為:y=kx(其中k≠0).13、【分析】連接,設AC、DE交于點N,如圖,根據題意可得的度數和BM的長度,易證為的中位線,故MN可求,然后利用S陰影=S扇形MBE,代入相關數據求解即可.【詳解】解:連接,設AC、DE交于點N,如圖,由題意可知,,∴,∵,,且為的中點,∴為的中位線,∴,,∴S陰影=S扇形MBE.【點睛】本題考查了旋轉的性質、三角形的中位線定理、扇形面積的計算等知識,屬于??碱}型,熟練掌握旋轉的性質、將所求不規則圖形的面積轉化為規則圖形的面積的和差是解題的關鍵.14、y3>y1>y2.【解析】試題分析:將A,B,C三點坐標分別代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考點:二次函數的函數值比較大小.15、,答案不唯一【解析】設反比例函數解析式為y=,根據題意得k<0,|k|<1,當k取?5時,反比例函數解析式為y=?.故答案為y=?.答案不唯一.16、【分析】根據已知得出圓錐的底面半徑為10cm,圓錐的側面積=π×底面半徑×母線長,即可得出答案.【詳解】解:底面圓的半徑為10,則底面周長=10π,

側面面積=×10π×30=300πcm1.

故答案為:300πcm1.【點睛】本題主要考查了圓錐的側面積公式,掌握圓錐側面積公式是解決問題的關鍵,此問題是中考中考查重點.17、【分析】根據科學記數法的定義以及應用將數進行表示即可.【詳解】故答案為:.【點睛】本題考查了科學記數法的定義以及應用,掌握科學記數法的定義以及應用是解題的關鍵.18、80【解析】∵∠A+∠C=180°,∴∠A=180°?140°=40°,∴∠BOD=2∠A=80°.故答案為80.三、解答題(共66分)19、y=x2﹣2x.【分析】根據拋物線經過原點可得c=0,根據對稱軸公式求得b,即可求得其解析式.【詳解】∵拋物線y=x2+bx+c經過原點,∴c=0,又∵拋物線y=x2+bx+c的對稱軸為x=1,∴﹣=1,解得b=﹣2∴拋物線的解析式為y=x2﹣2x.【點睛】本題考查了待定系數法求二次函數的解析式,熟練掌握對稱軸公式是解題的關鍵.20、(1)a=16,b=17.5(2)90(3)【解析】試題分析:(1)首先求得總人數,然后根據百分比的定義求解;(2)利用總數乘以對應的百分比即可求解;(3)利用列舉法,根據概率公式即可求解.試題解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案為16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案為90;(3)如圖,∵共有20種等可能的結果,兩名主持人恰為一男一女的有12種情況,∴則P(恰好選到一男一女)==.考點:列表法與樹狀圖法;用樣本估計總體;扇形統計圖.21、.【分析】分別根據特殊角的三角函數值、零指數冪的運算法則和二次根式的性質計算各項,再合并即得結果.【詳解】解:原式=.【點睛】本題考查了特殊角的三角函數值、零指數冪和二次根式的性質等知識,屬于應知應會題型,熟練掌握基本知識是關鍵.22、(1)花園的邊長為:和;(2)當或時,有最大值為,此時花園的邊長為或.【分析】(1)根據等量關系:矩形的面積為91,列出方程即可求解;(2)由在P處有一棵樹與墻CD,AD的距離分別是和,列出不等式組求出的取值范圍,根據二次函數的性質求解即可.【詳解】(1)設長為.由題意得:解得:答:花園的邊長為:和.(2)設花園的一邊長為,面積為.由題意:或解得:,或.當或時,有最大值為,此時花園的邊長為或.【點睛】本題考查了方程的應用,二次函數的應用以及不等式組的應用,認真審題準確找出等量關系是解題的關鍵.23、(1)必然,不可能;(2);(3)此游戲不公平.【解析】(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關鍵.24、(1)9,2n+1;(2)2n+1,見解析【分析】(1)觀察一系列等式左邊分子為連續兩個整數的積,右邊為從3開始的連續奇數,即可寫出第4個方程及第n個方程;(2)歸納總結即可得到第n個方程的解為n與n+1,代入檢驗即可.【詳解】解:(1)x+=x+=9,x+=2n+1;故答案為:x+=9;x+=2n+1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論