2022年河南省南陽市鄧州市張村鄉中學數學九年級第一學期期末經典試題含解析_第1頁
2022年河南省南陽市鄧州市張村鄉中學數學九年級第一學期期末經典試題含解析_第2頁
2022年河南省南陽市鄧州市張村鄉中學數學九年級第一學期期末經典試題含解析_第3頁
2022年河南省南陽市鄧州市張村鄉中學數學九年級第一學期期末經典試題含解析_第4頁
2022年河南省南陽市鄧州市張村鄉中學數學九年級第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.設A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1,y2,y3的大小關系為()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y22.如圖,線段AB兩個端點坐標分別為A(4,6),B(6,2),以原點O為位似中心,在第三象限內將線段AB縮小為原來的后,得到線段CD,則點C的坐標為()A.(﹣2,﹣3) B.(﹣3,﹣2) C.(﹣3,﹣1) D.(﹣2,﹣1)3.已知⊙O的半徑為13,弦AB//CD,AB=24,CD=10,則AB、CD之間的距離為A.17 B.7 C.12 D.7或174.下列方程中是關于x的一元二次方程的是()A.x2+=0 B.(x-1)2=(x+3)(x-2)+1C.x=x2 D.ax2+bx+c=05.下列命題正確的是()A.三點確定一個圓 B.圓中平分弦的直徑必垂直于弦C.矩形一定有外接圓 D.三角形的內心是三角形三條中線的交點6.一元二次方程的根的情況是()A.有兩個相等的實數根 B.有兩個不相等的實數根C.只有一個實數根 D.沒有實數根7.某數學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:學*科*網]8.某公司為調動職工工作積極性,向工會代言人提供了兩個加薪方案,要求他從中選擇:方案一:是12個月后,在年薪20000元的基礎上每年提高500元(第一年年薪20000元);方案二:是6個月后,在半年薪10000元的基礎上每半年提高125元(第6個月末發薪水10000元);但不管是選哪一種方案,公司都是每半年發一次工資,如果你是工會代言人,認為哪種方案對員工更有利?()A.方案一 B.方案二C.兩種方案一樣 D.工齡短的選方案一,工齡長的選方案二9.如圖,是的直徑,弦于點,如果,,那么線段的長為()A.6 B.8 C.10 D.1210.如果將拋物線向右平移1個單位,那么所得新拋物線的頂點坐標是()A. B. C. D.11.如圖,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.關于優弧CAD,下列結論正確的是()A.經過點B和點E B.經過點B,不一定經過點EC.經過點E,不一定經過點B D.不一定經過點B和點E12.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.2二、填空題(每題4分,共24分)13.如圖,將△ABC繞點C順時針旋轉,使得點B落在AB邊上的點D處,此時點A的對應點E恰好落在BC邊的延長線上,若∠B=50°,則∠A的度數為_____.14.如圖,四邊形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,則線段BF=______.15.75°的圓心角所對的弧長是2.5cm,則此弧所在圓的半徑是_____cm.16.今年我國生豬價格不斷飆升,某超市的排骨價格由第一季度的每公斤元上漲到第三季度的每公斤元,則該超市的排骨價格平均每個季度的增長率為________.17.如圖,點A,B的坐標分別為(1,4)和(4,4),拋物線y=a(x﹣m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),點C的橫坐標最小值為﹣3,則點D的橫坐標最大值為_____.18.如圖,利用我們現在已經學過的圓和銳角三角函數的知識可知,半徑r和圓心角θ及其所對的弦長l之間的關系為,從而,綜合上述材料當時,______.三、解答題(共78分)19.(8分)如圖,AB是⊙O的直徑,CD是⊙O的弦,且CD⊥AB于點E.(1)求證:∠BCO=∠D;(2)若,AE=1,求劣弧BD的長.20.(8分)已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經過點A,B.(1)求拋物線解析式;(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.21.(8分)如圖,在平面直角坐標xOy中,正比例函數y=kx的圖象與反比例函數y=的圖象都經過點A(2,﹣2).(1)分別求這兩個函數的表達式;(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數圖象在第四象限內的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.22.(10分)如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC,將△ABC沿AB翻折后得到△ABD

(1)試說明點D在⊙O上;(2)在線段AD的延長線上取一點E,使AB2=AC·AE,求證:BE為⊙O的切線;(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.23.(10分)如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點且滿足∠DCA=∠B,連接AD.(1)求證:CD是⊙O的切線;(2)若AD⊥CD,AB=10,AD=8,求AC的長;(3)如圖2,當∠DAB=45°時,AD與⊙O交于E點,試寫出AC、EC、BC之間的數量關系并證明.24.(10分)如圖,小明欲利用測角儀測量樹的高度.已知他離樹的水平距離BC為10m,測角儀的高度CD為1.5m,測得樹頂A的仰角為33°.求樹的高度AB.(參考數據:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)25.(12分)拋物線的圖像與軸的一個交點為,另一交點為,與軸交于點,對稱軸是直線.(1)求該二次函數的表達式及頂點坐標;(2)畫出此二次函數的大致圖象;利用圖象回答:當取何值時,?(3)若點在拋物線的圖像上,且點到軸距離小于3,則的取值范圍為;26.在平面直角坐標系xOy中,拋物線y=x2﹣2mx+m2﹣1.(1)求拋物線頂點C的坐標(用含m的代數式表示);(2)已知點A(0,3),B(2,3),若該拋物線與線段AB有公共點,結合函數圖象,求出m的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據函數解析式畫出拋物線以及在圖象上標出三個點的位置,根據二次函數圖像的增減性即可得解.【詳解】∵函數的解析式是,如圖:∴對稱軸是∴點關于對稱軸的點是,那么點、、都在對稱軸的右邊,而對稱軸右邊隨的增大而減小,于是.故選:A.【點睛】本題考查了二次函數圖象的對稱性以及增減性,畫出函數圖像是解題的關鍵,根據題意畫出函數圖象能夠更直觀的解答.2、A【詳解】解:∵線段AB的兩個端點坐標分別為A(4,6),B(6,2),以原點O為位似中心,在第三象限內將線段AB縮小為原來的后得到線段CD,∴端點C的橫坐標和縱坐標都變為A點的一半,∴端點C的坐標為:(-2,-3).故選A.3、D【解析】①當弦AB和CD在圓心同側時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②當弦AB和CD在圓心異側時,如圖2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB與CD之間的距離為7cm或17cm.故選D.點睛:本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數形結合思想與分類討論思想的應用,小心別漏解.4、C【詳解】A.x2+=0,是分式方程,故錯誤;B.(x-1)2=(x+3)(x-2)+1經過整理后為:3x-6=0,是一元一次方程,故錯誤;C.x=x2,是一元二次方程,故正確;D.當a=0時,ax2+bx+c=0不是一元二次方程,故錯誤,故選C.5、C【分析】根據確定圓的條件、垂徑定理、矩形的性質定理和三角形內心的定義,進行判斷即可.【詳解】∵不在一條直線上的三點確定一個圓,∴A錯誤;∵圓中平分弦(不是直徑)的直徑必垂直于弦,∴B錯誤;∵矩形一定有外接圓,∴C正確;∵三角形的內心是三角形三條角平分線的交點,∴D錯誤;故選:C.【點睛】本題主要考查真假命題的判斷,掌握確定圓的條件、垂徑定理、矩形的性質定理和三角形內心的定義,是解題的關鍵.6、D【分析】先計算判別式的值,然后根據判別式的意義判斷方程根的情況.【詳解】∵△=62-4×(-1)×(-10)=36-40=-4<0,

∴方程沒有實數根.

故選D.【點睛】此題考查一元二次方程的根的判別式,解題關鍵在于掌握方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.7、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現象8、B【分析】根據題意分別計算出方案一和方案二的第n年的年收入,進行大小比較,從而得出選項.【詳解】解:第n年:方案一:12個月后,在年薪20000元的基礎上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6個月后,在半年薪10000元的基礎上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永遠比方案一,故選方案二更劃算;故選B.【點睛】本題考查方案選擇,解題關鍵是準確理解題意根據題意列式比較方案間的優劣進行分析.9、A【分析】連接OD,由直徑AB與弦CD垂直,根據垂徑定理得到E為CD的中點,由CD的長求出DE的長,又由直徑的長求出半徑OD的長,在直角三角形ODE中,由DE及OD的長,利用勾股定理即可求出OE的長.【詳解】解:如圖所示,連接OD.

∵弦CD⊥AB,AB為圓O的直徑,

∴E為CD的中點,

又∵CD=16,

∴CE=DE=CD=8,

又∵OD=AB=10,

∵CD⊥AB,∴∠OED=90°,

在Rt△ODE中,DE=8,OD=10,

根據勾股定理得:OE==6,

則OE的長度為6,

故選:A.【點睛】本題主要考查了垂徑定理,勾股定理,解答此類題常常利用垂徑定理由垂直得中點,進而由弦長的一半,弦心距及圓的半徑構造直角三角形,利用勾股定理是解答此題的關鍵.10、C【分析】根據拋物線的平移規律得出平移后的拋物線的解析式,即可得出答案.【詳解】解:由將拋物線y=3x2+2向右平移1個單位,得

y=3(x-1)2+2,

頂點坐標為(1,2),

故選:C.【點睛】本題考查了二次函數圖象與幾何變換,利用平移規律:左加右減,上加下減是解題關鍵.11、B【分析】由條件可知BC垂直平分AD,可證△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°則A、B、D、C四點共圓,即可得結論.【詳解】解:如圖:設AD、BC交于M∵AC=CD,AD⊥BC∴M為AD中點∴BC垂直平分AD∴AB=DB∵BC=BC,AC=CD∴△ABC≌△DBC∴∠BAC=∠BDC=90°∴∠BAC+∠BDC=180°∴A、B、D、C四點共圓∴優弧CAD經過B,但不一定經過E故選B【點睛】本題考查了四點共圓,掌握四點共圓的判定是解題的關鍵.12、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.【點睛】本題主要考查圓周角定理的推論及相似三角形的判定及性質,掌握圓周角定理的推論及相似三角形的性質是解題的關鍵.二、填空題(每題4分,共24分)13、30°【分析】由旋轉的性質可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形內角和定理可求∠BCD=80°=∠ACE,由外角性質可求解.【詳解】解:∵將△ABC繞點C順時針旋轉,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案為:30°.【點睛】本題考查了旋轉的性質,三角形內角和與三角形外角和性質,解決本題的關鍵是正確理解題意,熟練掌握旋轉的性質,能夠由旋轉的到相等的角.14、【分析】連接,延長BA,CD交于點,根據∠BAD=∠BCD=90°可得點A、B、C、D四點共圓,根據圓周角定理可得,根據DE⊥AC可證明△AED∽△BCD,可得,利用勾股定理可求出AD的長,由∠ABC=45°可得△ABG為等腰直角三角形,進而可得△ADG是等腰直角三角形,即可求出AG、DG的長,根據BC=2CD可求出CD、BC、AB的長,根據,可證明△AED∽△FAD,根據相似三角形的性質可求出AF的長,即可求出BF的長.【詳解】連接,延長BA,CD交于點,∵,∴四點共圓,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【點睛】本題考查圓周角定理、勾股定理及相似三角形的判定與性質,如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;如果兩個三角形的兩組對應邊的比相等,并且對應的夾角相等,那么這兩個三角形相似;如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.15、1【分析】由弧長公式:計算.【詳解】解:由題意得:圓的半徑.故本題答案為:1.【點睛】本題考查了弧長公式.16、【分析】等量關系為:第一季度的豬肉價格×(1+增長率)2=第三季度的豬肉價格【詳解】解:設平均每個季度的增長率為g,∵第一季度為每公斤元,第三季度為每公斤元,,解得.∴平均每個季度的增長率.故答案為:.【點睛】本題考查了一元二次方程的應用,是??疾榈脑鲩L率問題,解題的關鍵是熟悉有關增長率問題的有關等式.17、1【分析】根據題意當點C的橫坐標取最小值時,拋物線的頂點與點A重合,進而可得拋物線的對稱軸,則可求出此時點D的最小值,然后根據拋物線的平移可求解.【詳解】解:∵點A,B的坐標分別為(1,4)和(4,4),∴AB=3,由拋物線y=a(x﹣m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),可得:當點C的橫坐標取最小值時,拋物線的頂點與點A重合,∴拋物線的對稱軸為:直線,∵點,∴點D的坐標為,∵頂點在線段AB上移動,∴點D的橫坐標的最大值為:5+3=1;故答案為1.【點睛】本題主要考查二次函數的平移及性質,熟練掌握二次函數的性質是解題的關鍵.18、【分析】如圖所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根據,設AB=l=2a,OA=r=3a,根據等量代換得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表達出,代入計算即可.【詳解】解:如圖所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴設AB=l=2a,OA=r=3a,過點A作AE⊥OB于點E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案為:.【點睛】本題考查了垂徑定理以及銳角三角函數的定義,解題的關鍵是熟練掌握垂徑定理的內容,作出輔助線,求出AE的值.三、解答題(共78分)19、(1)見解析;(2).【分析】(1)由等腰三角形的性質與圓周角定理,易得∠BCO=∠B=∠D;

(2)由垂徑定理可求得CE與DE的長,然后證得△BCE∽△DAE,再由相似三角形的對應邊成比例,求得BE的長,繼而求得直徑與半徑,再求出圓心角∠BOD即可解決問題;【詳解】(1)證明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:連接OD.∵AB是⊙O的直徑,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半徑為2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的長.【點睛】此題考查圓周角定理、垂徑定理、相似三角形的判定與性質以及等腰三角形的性質.注意在同圓或等圓中,同弧或等弧所對的圓周角相等.證得△BCE∽△DAE是解題關鍵.20、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,點N的坐標為(﹣1,﹣2)或(﹣1,0),理由見解析【分析】(1)先確定出點A,B坐標,再用待定系數法即可得出結論;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出結論;(3)分兩種情況:①以BD為一邊,判斷出△EDB≌△GNM,即可得出結論.②以BD為對角線,利用中點坐標公式即可得出結論.【詳解】(1)當x=0時,y=3,∴B(0,3),當y=0時,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=(m+3),∵DE=AD,∴﹣m2﹣3m=2(m+3),∴m1=﹣3(舍),m2=﹣2;(3)存在,分兩種情況:①以BD為一邊,如圖1,設對稱軸與x軸交于點G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E與B關于對稱軸對稱,∴BE∥x軸,∵四邊形DNMB是平行四邊形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②當BD為對角線時,如圖2,此時四邊形BMDN是平行四邊形,設M(n,﹣n2﹣2n+3),N(﹣1,h),∵B(0,3),D(-2,1),∴∴n=-1,h=0∴N(﹣1,0);綜上所述,點N的坐標為(﹣1,﹣2)或(﹣1,0).【點睛】此題是二次函數的綜合題,考查待定系數法求函數解析式,根據線段之間的數量關系求點坐標,根據點的位置構建平行四邊形,(3)中以BD為對角線時,利用中點坐標公式計算更簡單.21、(1)反比例函數表達式為,正比例函數表達式為;(2),.【解析】試題分析:(1)將點A坐標(2,-2)分別代入y=kx、y=求得k、m的值即可;(2)由題意得平移后直線解析式,即可知點B坐標,聯立方程組求解可得第四象限內的交點C得坐標,可將△ABC的面積轉化為△OBC的面積.試題解析:()把代入反比例函數表達式,得,解得,∴反比例函數表達式為,把代入正比例函數,得,解得,∴正比例函數表達式為.()直線由直線向上平移個單位所得,∴直線的表達式為,由,解得或,∵在第四象限,∴,連接,∵,,,.22、(1)證明見解析;(2)證明見解析;(3)EF=【解析】分析:(1)由翻折知△ABC≌△ABD,得∠ADB=∠C=90°,據此即可得;(2)由AB=AD知AB2=AD?AE,即,據此可得△ABD∽△AEB,即可得出∠ABE=∠ADB=90°,從而得證;(3)由知DE=1、BE=,證△FBE∽△FAB得,據此知FB=2FE,在Rt△ACF中根據AF2=AC2+CF2可得關于EF的一元二次方程,解之可得.詳解:(1)∵AB為⊙O的直徑,∴∠C=90°,∵將△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴點D在以AB為直徑的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC?AE,∴AB2=AD?AE,即,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB為⊙O的直徑,∴BE是⊙O的切線;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB=,∵,∴,解得:DE=1,∴BE=,∵四邊形ACBD內接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴,即,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得:3EF2-2EF-5=0,解得:EF=-1(舍)或EF=,∴EF=.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓周角定理、翻折的性質、圓內接四邊形的性質及相似三角形的判定與性質、勾股定理等知識點.23、(1)見解析;(2)AC的長為4;(3)AC=BC+EC,理由見解析【分析】(1)連接OC,由直徑所對圓周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因為∠DCA=∠B,從而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2)由題意證明△ACD∽△ABC,根據對應邊成比例列出等式求出AC即可;(3)在AC上截取AF使AF=BC,連接EF、BE,通過條件證明△AEF≌△BEC,根據性質推出△EFC為等腰直角三角形,即可證明AC、EC、BC的數量關系.【詳解】(1)證明:連接OC,如圖1所示:∵AB是⊙O的直徑,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切線;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴,即,∴AC=4,即AC的長為4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,連接EF、BE,如圖2所示:∵AB是直徑,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB為等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論