




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在同一時刻,身高1.6m的小強在陽光下的影長為0.8m,一棵大樹的影長為4.8m,則樹的高度為()A.4.8m B.6.4m C.9.6m D.10m2.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同3.若二次函數y=ax2+bx+c(a<0)的圖象經過點(2,0),且其對稱軸為x=﹣1,則使函數值y>0成立的x的取值范圍是().A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<24.在Rt△ABC中,∠C=90°,、、所對的邊分別為a、b、c,如果a=3b,那么∠A的余切值為()A. B.3 C. D.5.如圖,AB、BC、CD、DA都是⊙O的切線,已知AD=2,BC=5,則AB+CD的值是A.14 B.12 C.9 D.76.一枚質地勻均的骰子,其六個面上分別標有數字:1,2,3,4,5,6,投擲一次,朝上面的數字大于4的概率是()A. B. C. D.7.如圖,一次函數和反比例函數的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或8.如圖,平行四邊形ABCD中,EF∥BC,AE:EB=2:3,EF=4,則AD的長為()A. B.8 C.10 D.169.如圖1,S是矩形ABCD的AD邊上一點,點E以每秒kcm的速度沿折線BS-SD-DC勻速運動,同時點F從點C出發點,以每秒1cm的速度沿邊CB勻速運動.已知點F運動到點B時,點E也恰好運動到點C,此時動點E,F同時停止運動.設點E,F出發t秒時,△EBF的面積為.已知y與t的函數圖像如圖2所示.其中曲線OM,NP為兩段拋物線,MN為線段.則下列說法:①點E運動到點S時,用了2.5秒,運動到點D時共用了4秒;②矩形ABCD的兩鄰邊長為BC=6cm,CD=4cm;③sin∠ABS=;④點E的運動速度為每秒2cm.其中正確的是()A.①②③ B.①③④ C.①②④ D.②③④10.若△ABC∽△DEF,且△ABC與△DEF的面積比是,則△ABC與△DEF對應中線的比為()A. B. C. D.11.如圖,太陽在A時測得某樹(垂直于地面)的影長ED=2米,B時又測得該樹的影長CD=8米,若兩次日照的光線PE⊥PC交于點P,則樹的高度為PD為()A.3米 B.4米 C.4.2米 D.4.8米12.若拋物線經過點,則的值在().A.0和1之間 B.1和2之間 C.2和3之間 D.3和4之間二、填空題(每題4分,共24分)13.如圖,是⊙的直徑,是⊙上一點,的平分線交⊙于,且,則的長為_________.14.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.15.如圖,現分別旋轉兩個標準的轉盤,則轉盤所轉到的兩個數字之積為奇數的概率是______.16.鉛球行進高度y(m)與水平距離x(m)之間的關系為y=﹣x2+x+,鉛球推出后最大高度是_____m,鉛球落地時的水平距離是______m.17.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數是_____.18.一組數據3,2,1,4,的極差為5,則為______.三、解答題(共78分)19.(8分)如圖,把點以原點為中心,分別逆時針旋轉,,,得到點,,.(1)畫出旋轉后的圖形,寫出點,,的坐標,并順次連接、,,各點;(2)求出四邊形的面積;(3)結合(1),若把點繞原點逆時針旋轉到點,則點的坐標是什么?20.(8分)如圖,四邊形是正方形,連接,將繞點逆時針旋轉得,連接,為的中點,連接,.(1)如圖1,當時,求證:;(2)如圖2,當時,(1)還成立嗎?請說明理由.21.(8分)如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點M是AB邊的中點.(1)如圖1,若CM=,求△ACB的周長;(2)如圖2,若N為AC的中點,將線段CN以C為旋轉中心順時針旋轉60°,使點N至點D處,連接BD交CM于點F,連接MD,取MD的中點E,連接EF.求證:3EF=2MF.22.(10分)如圖,在中,,,,點在上,,以為半徑的交于點,的垂直平分線交于點,交于點,連接.(1)求證:直線是的切線;(2)求線段的長.23.(10分)如圖,在中,,,為外一點,將繞點按順時針方向旋轉得到,且點、、三點在同一直線上.(1)(觀察猜想)在圖①中,;在圖②中,(用含的代數式表示)(2)(類比探究)如圖③,若,請補全圖形,再過點作于點,探究線段,,之間的數量關系,并證明你的結論;(3)(問題解決)若,,,求點到的距離.24.(10分)如圖,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.動點P,Q從點A同時出發,點P沿AB向終點B運動;點Q沿AC→CB向終點B運動,速度都是1cm/s.當一個點到達終點時,另一個點同時停止運動.設點P運動的時間為t(s),在運動過程中,點P,點Q經過的路線與線段PQ圍成的圖形面積為S(cm2).(1)AC=_________cm;(2)當點P到達終點時,BQ=_______cm;(3)①當t=5時,s=_________;②當t=9時,s=_________;(4)求S與t之間的函數解析式.25.(12分)閱讀下列材料:小輝和小樂一起在學校寄宿三年了,畢業之際,他們想合理分配共同擁有的三件“財產”:一個電子詞典、一臺迷你唱機、一套珍藏版小說.他們本著“在尊重各自的價值偏好基礎上進行等值均分”的原則,設計了分配方案,步驟如下(相應的數額如表二所示):①每人各自定出每件物品在心中所估計的價值;②計算每人所有物品估價總值和均分值(均分:按總人數均分各自估價總值);③每件物品歸估價較高者所有;④計算差額(差額:每人所得物品的估價總值與均分值之差);⑤小樂拿225元給小輝,仍“剩下”的300元每人均分.依此方案,兩人分配的結果是:小輝拿到了珍藏版小說和375元錢,小樂拿到的電子詞典和迷你唱機,但要付出375元錢.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估價如表三所示,依照上述方案,請直接寫出分配結果;(2)小紅和小麗分配D,E兩件物品,兩人的估價如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下來,依據“在尊重各自的價值偏好基礎上進行等值均分”的原則,該怎么分配較為合理?請完成表四,并寫出分配結果.(說明:本題表格中的數值的單位均為“元”)26.將矩形如圖放置在平面直角坐標系中,為邊上的一個動點,過點作交邊于點,且,的長是方程的兩個實數根,且.(1)設,,求與的函數關系(不求的取值范圍);(2)當為的中點時,求直線的解析式;(3)在(2)的條件下,平面內是否存在點,使得以,,,為頂點的四邊形為平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】設樹高為x米,所以x=4.8×2=9.6.這棵樹的高度為9.6米故選C.【點睛】考查相似三角形的應用,掌握同一時刻物高和影長成正比是解題的關鍵.2、B【分析】直接利用已知幾何體分別得出三視圖進而分析得出答案.【詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【點睛】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關鍵.3、D【分析】由拋物線與x軸的交點及對稱軸求出另一個交點坐標,根據拋物線開口向下,根據圖象求出使函數值y>0成立的x的取值范圍即可.【詳解】∵二次函數y=ax1+bx+c(a<0)的圖象經過點(1,0),且其對稱軸為x=﹣1,∴二次函數的圖象與x軸另一個交點為(﹣4,0),∵a<0,∴拋物線開口向下,則使函數值y>0成立的x的取值范圍是﹣4<x<1.故選D.4、A【分析】根據銳角三角函數的定義,直接得出cotA=,即可得出答案.【詳解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故選擇:A.【點睛】此題主要考查了銳角三角函數的定義,熟練地應用銳角三角函數的定義是解決問題的關鍵.5、D【分析】根據切線長定理,可以證明圓的外切四邊形的對邊和相等,由此即可解決問題.【詳解】∵AB、BC、CD、DA都是⊙O的切線,∴可以假設切點分別為E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故選D.【點睛】本題考查切線的性質、切線長定理等知識,解題的關鍵是證明圓的外切四邊形的對邊和相等,屬于中考常考題型.6、B【分析】直接得出朝上面的數字大于4的個數,再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,∴共有6種情況,其中朝上面的數字大于4的情況有2種,∴朝上一面的數字是朝上面的數字大于4的概率為:,故選:B.【點睛】本題考查簡單的概率求法,概率=所求情況數與總情況數的比;熟練掌握概率公式是解題關鍵.7、B【分析】根據圖象找出一次函數圖象在反比例函數圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數圖象可發現:或時,一次函數圖象在反比例函數圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數與一次函數綜合,函數與不等式,利用數形結合思想是解題的關鍵.8、C【分析】根據平行于三角形一邊的直線和其他兩邊相交,所截得的三角形與原三角形相似,可證明△AEF∽△ABC,再根據相似三角形的對應邊成比例可解得BC的長,而在?ABCD中,AD=BC,問題得解.【詳解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四邊形ABCD是平行四邊形,∴AD=BC=1.【點睛】本題考查(1)、相似三角形的判定與性質;(2)、平行四邊形的性質.9、C【分析】①根據函數圖像的拐點是運動規律的變化點由圖象即可判斷.②設,,由函數圖像利用△EBF面積列出方程組即可解決問題.③由,,得,設,,在中,由列出方程求出,即可判斷.④求出即可解決問題.【詳解】解:函數圖像的拐點時點運動的變化點根據由圖象可知點運動到點時用了2.5秒,運動到點時共用了4秒.故①正確.設,,由題意,解得,所以,,故②正確,,,,設,,在中,,,解得或(舍,,,,故③錯誤,,,,故④正確,故選:C.【點睛】本題考查二次函數綜合題、銳角三角函數、勾股定理、三角形面積、函數圖象問題等知識,讀懂圖象信息是解決問題的關鍵,學會設未知數列方程組解決問題,把問題轉化為方程去思考,是數形結合的好題目,屬于中考選擇題中的壓軸題.10、D【分析】根據相似三角形的面積比等于相似比的平方,再結合相似三角形的對應中線的比等于相似比解答即可.【詳解】∵△ABC∽△DEF,△ABC與△DEF的面積比是,∴△ABC與△DEF的相似比為,∴△ABC與△DEF對應中線的比為,故選D.【點睛】考查的是相似三角形的性質,相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方;相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.11、B【分析】根據題意求出△PDE和△FDP相似,根據相似三角形對應邊成比例可得=,然后代入數據進行計算即可得解.【詳解】∵PE⊥PC,∴∠E+∠C=90°,∠E+∠EPD=90°,∴∠EPD=∠C,又∵∠PDE=∠FDP=90°,∴△PDE∽△FDP,∴=,由題意得,DE=2,DC=8,∴=,解得PD=4,即這顆樹的高度為4米.故選:B.【點睛】本題通過投影的知識結合三角形的相似,求解高的大小;是平行投影性質在實際生活中的應用.12、D【分析】將點A代入拋物線表達式中,得到,根據進行判斷.【詳解】∵拋物線經過點,∴,∵,∴的值在3和4之間,故選D.【點睛】本題考查拋物線的表達式,無理數的估計,熟知是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】連接OD,由AB是直徑,得∠ACB=90°,由角平分線的性質和圓周角定理,得到△AOD是等腰直角三角形,根據勾股定理,即可求出AD的長度.【詳解】解:連接OD,如圖,∵是⊙的直徑,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案為:.【點睛】本題考查了圓周角定理,直徑所對的圓周角是直角,勾股定理,以及等腰直角三角形的性質,解題的關鍵是掌握圓周角定理進行解題.14、【解析】分析:根據概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經過搭配所能產生的結果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、【解析】畫樹狀圖得:∵共有6種等可能的結果,轉盤所轉到的兩個數字之積為奇數的有2種情況,
∴轉盤所轉到的兩個數字之積為奇數的概率是:.故答案是:.【點睛】此題考查了列表法或樹狀圖法求概率.注意此題屬于放回實驗,用到的知識點為:概率=所求情況數與總情況數之比.16、310【分析】利用配方法將函數解析式轉化為頂點式,利用二次函數的性質,可求得鉛球行進的最大高度;鉛球推出后落地時,高度y=0,把實際問題可理解為當y=0時,求得x的值就是鉛球落地時的水平距離.【詳解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因為﹣<0所以當x=4時,y有最大值為3.所以鉛球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以鉛球落地時的水平距離是10m.故答案為3、10.【點睛】此題考查了函數式中自變量與函數表達的實際意義,需要結合題意,取函數或自變量的特殊值列方程求解.正確解答本題的關鍵是掌握二次函數的性質.17、120°【分析】設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.18、-1或1【分析】由題意根據極差的公式即極差=最大值-最小值.可能是最大值,也可能是最小值,分兩種情況討論.【詳解】解:當x是最大值,則x-(1)=5,所以x=1;當x是最小值,則4-x=5,所以x=-1;故答案為-1或1.【點睛】本題考查極差的定義,極差反映了一組數據變化范圍的大小,求極差的方法是用一組數據中的最大值減去最小值,同時注意分類的思想的運用.三、解答題(共78分)19、(1)詳見解析,,,;(2)50;(3)【分析】(1)根據題意再表格中得出B、C、D,并順次連接、,,各點即可畫出旋轉后的圖形,寫出點,,的坐標即可.(2)可證得四邊形ABCD是正方形,根據正方形的面積公式:正方形的面積=對角線×對角線÷2即可得出結果.(3)觀察(1)可以得出規律,旋轉后的點的坐標和旋轉前的點橫縱坐標位置相反,且縱坐標變為相反數.【詳解】解:(1)如圖,,,(2)由旋轉性質可得:,∴,∴四邊形ABCD為正方形,∴(3)根據題(1)可得出【點睛】本題主要考查的是作圖和旋轉的性質,根據題目要求準確的作出圖形是解題的關鍵.20、(1)詳見解析;(2)當時,成立,理由詳見解析.【分析】(1)由旋轉的性質得:,根據直角三角形斜邊中線的性質可得OD=CF,OE=CF,進而可得OD=OE;(2)連接CE、DF,根據等腰三角形的性質可得,利用角的和差關系可得,利用SAS可證明△ACE≌△AFD,可得CE=DF,∠ECA=∠DFA,利用角的和差關系可得,利用SAS可證明△EOC≌△DOF,即可證明OD=OE,可得(1)結論成立.【詳解】(1)∵四邊形ABCD是正方形,AC為對角線,∴∠BAC=45°,∵將繞點逆時針旋轉得,=45°,∴點E在AC上,∴,為的中點,∴同理:∴.(2)當時,成立,理由如下:連接,如圖所示:∵在正方形中,,AB=AE,∴,∵為的中點,∴,∵,∴,∵=45°,∴,∴,在和中,,∴,∴,∵,∴,∴,在和中,,∴,∴.【點睛】本題考查正方形的性質、旋轉的性質及全等三角形的判定與性質,正確得出對應邊和對應角,熟練掌握全等三角形的判定定理是解題關鍵.21、(1);(2)證明見解析.【分析】(1)根據直角三角形中,斜邊上的中線等于斜邊的一半可得AB的長度,根據30°所對的直角邊等于斜邊的一半可得BC的長度,最后根據勾股定理可得AC的長度,計算出周長即可;(2)如圖所示添加輔助線,由(1)可得ΔBCM是等邊三角形,可證ΔBCP≌ΔCMN,進而證明ΔBPF≌ΔDCF,根據E是MD中點,得出,根據BPMC,得出,進而得出3EF=2MF即可.【詳解】解:(1)在Rt△ABC中,∠ACB=90°,點M是AB邊的中點,∴∴AB=2MC=,又∵∠A=30°,∴由勾股定理可得,∴△ABC的周長為++6=(2)過點B作BPMC于P∵∠ACB=90°,∠A=30°,∴∵M為AB的中點,∴∴∵∠ABC=60°∴ΔBCM是等邊三角形∴∠CBP=∠MCN=30°,BC=CM∴在ΔBCP與ΔCMN中∴ΔBCP≌ΔCMN(AAS)∴BP=CN∵CN=CD∴BP=CD∵∠BPF=∠DCF=90°∠BFP=∠DFC∴ΔBPF≌ΔDCF∴PF=FCBF=DF∵E是MD中點,∴∵BPMC,∴∴,∴∴【點睛】本題考查含30°直角三角形的性質、全等三角形的性質與判定、旋轉的性質,解題的關鍵是能夠綜合運用上述幾何知識進行推理論證.22、(1)見解析;(2).【分析】(1)連接,利用垂直平分線的性質及等腰三角形的性質通過等量代換可得出,即,則,則結論可證;(2)連接,設,,利用勾股定理即可求出x的值.【詳解】(1)證明:連接,∵垂直平分,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴是的切線.(2)解:連接,OD,設,,∵,∴,解得,∴.【點睛】本題主要考查切線的判定及勾股定理,掌握切線的判定方法及勾股定理是解題的關鍵.23、(1);;(2),證明見解析;(3)點到的距離為或.【分析】(1)在圖①中由旋轉可知,由三角形內角和可知∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,因為,∠OAP+∠PAB=∠OAB,所以∠APB=∠AOB=α;在圖②中,由旋轉可知,得到∠OBP+OAP=180°,通過四邊形OAPB的內角和為360°,可以得到∠AOB+∠APB=180°,因此∠APB=;(2)由旋轉可知≌,,,,因為,得到,即可得證;(3)當點在上方時,過點作于點,由條件可求得PA,再由可求出OH;當點在下方時,過點作于點,同理可求出OH.【詳解】(1)①由三角形內角和為180°得到∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,由旋轉可知,又∵∠OAP+∠PAB=∠OAB,∴∠OBP+∠PAB+∠ABO+∠AOB=180°,即∠PAB+∠ABP+∠AOB=180°,∴∠APB=∠AOB=α;②由旋轉可知,∵=180°,∴∠OBP+OAP=180°,又∵∠OBP+OAP+∠AOB+∠APB=360°,∴∠AOB+∠APB=180°,∴∠APB=;(2)證明:由繞點按順時針方向旋轉得到∴≌,,,,又∵,∴∴(3)【解法1】(i)如圖,當點在上方時,過點作于點由(1)知,,∵∴由(2)知,∴(ii)如圖,當點在下方時,過點作于點由(1)知,,∵∴∴∴點到的距離為或.【解法2】(i)如圖,當點在上方時,過點作于點,∵,,∴,∵,取的中點∴∴點,,,四點在圓上∴,且∴∴∵,,∴在中,,設,則∴,化簡得:∴,(不合題意,舍去)∴(ii)若點在的下方,過點作,同理可得:∴點到的距離為或.【點睛】本題屬于旋轉的綜合問題,題目分析起來有難度,要熟練掌握各種變化規律.24、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根據勾股定理求解即可;(2)先求出點P到達中點所需時間,則可知點Q運動路程,易得CQ長,;(3)①作PD⊥AC于D,可證△APD∽△ABC,利用相似三角形的性質可得PD長,根據面積公式求解即可;②作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質可得PE長,用可得s的值;(4)當0<t≤8時,作PD⊥AC于D,可證△APD∽△ABC,可用含t的式子表示出PD的長,利用三角形面積公式可得s與t之間的函數解析式;當8<t≤10時,作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質可用含t的式子表示出PE長,用可得s與t之間的函數解析式.【詳解】解:(1)在Rt△ABC中,由勾股定理得(2)設點P運動到終點所需的時間為t,路程為AB=10cm,則點Q運動的路程為10cm,即cm所以當點P到達終點時,BQ=4cm.(3)①作PD⊥AC于D,則∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即∴.∴.②如圖,作PE⊥AC于E,則∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.(4)當0<t≤8時,如圖①.作PD⊥AC于D.∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即.∴.∴.當8<t≤10時,如圖②.作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度浙江省二級造價工程師之建設工程造價管理基礎知識綜合練習試卷B卷附答案
- 2024年度浙江省二級造價工程師之土建建設工程計量與計價實務能力測試試卷A卷附答案
- 幼兒教師基本禮儀培訓
- 美業講師培訓
- DB43-T 2863-2023 樟葉槭扦插育苗技術規程
- 統編版二年級語文下冊第一單元基礎測試卷(單元測試)(含答案)
- 員工產品培訓
- 人的全面發展教育
- 電腦物理面試題及答案
- 創業前景面試題及答案
- 2024-2025學年江蘇省揚州市江都區高一上學期期中考試英語試題(解析版)
- 音樂欣賞:貝多芬第九交響曲音樂課教案
- 2025年小學語文知識考核試題及答案
- 2025教育機構教師勞動合同模板
- 學校檔口租賃合同提點模式協議書
- 工商業光伏技術方案
- 2025年中國便攜式氣體檢測儀行業市場規模調研及投資前景研究分析報告
- Unit 8 Once upon a Time Section A 1a-1e Pronunciation 課件 2024-2025學年英語人教版7年級下冊
- 2025國家開放大學《人文英語1》綜合測試形考任務答案
- 事業單位計算機類考試題庫及答案
- 西安2025年西安市事業單位招聘433名高層次及緊缺特殊專業人才筆試歷年參考題庫附帶答案詳解
評論
0/150
提交評論