學海大聯考 2022年高三數學第一學期期末達標檢測試題含解析_第1頁
學海大聯考 2022年高三數學第一學期期末達標檢測試題含解析_第2頁
學海大聯考 2022年高三數學第一學期期末達標檢測試題含解析_第3頁
學海大聯考 2022年高三數學第一學期期末達標檢測試題含解析_第4頁
學海大聯考 2022年高三數學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.2.已知定義在上的函數在區間上單調遞增,且的圖象關于對稱,若實數滿足,則的取值范圍是()A. B. C. D.3.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.4.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.5.執行如圖所示的程序框圖,輸出的結果為()A. B. C. D.6.從集合中隨機選取一個數記為,從集合中隨機選取一個數記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.7.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.8.已知集合,集合,則等于()A. B.C. D.9.設,,則()A. B.C. D.10.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.11.已知函數的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.12.已知集合,,且、都是全集(為實數集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.14.在矩形ABCD中,,,點E,F分別為BC,CD邊上動點,且滿足,則的最大值為________.15.已知數列的各項均為正數,滿足,.,若是等比數列,數列的通項公式_______.16.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.18.(12分)已知,.(1)當時,證明:;(2)設直線是函數在點處的切線,若直線也與相切,求正整數的值.19.(12分)追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數()的檢測數據,結果統計如下:空氣質量優良輕度污染中度污染重度污染嚴重污染天數61418272510(1)從空氣質量指數屬于,的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;(2)已知某企業每天的經濟損失(單位:元)與空氣質量指數的關系式為,試估計該企業一個月(按30天計算)的經濟損失的數學期望.20.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)已知各項均為正數的數列的前項和為,且,(,且)(1)求數列的通項公式;(2)證明:當時,22.(10分)設數列是等比數列,,已知,(1)求數列的首項和公比;(2)求數列的通項公式.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.2、C【解析】

根據題意,由函數的圖象變換分析可得函數為偶函數,又由函數在區間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數的圖象向左平移個單位長度可得函數的圖象,由于函數的圖象關于直線對稱,則函數的圖象關于軸對稱,即函數為偶函數,由,得,函數在區間上單調遞增,則,得,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數的單調性與奇偶性解不等式,注意分析函數的奇偶性,屬于中等題.3、B【解析】

設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.4、B【解析】

先求出直線l的方程為y(x﹣c),與y=±x聯立,可得A,B的縱坐標,利用,求出a,b的關系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質,考查向量知識,考查學生的計算能力,屬于中檔題.5、D【解析】

由程序框圖確定程序功能后可得出結論.【詳解】執行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結論,也可以由程序框圖確定程序功能,然后求解.6、A【解析】

設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.7、B【解析】由題意可得c=,設右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.8、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.9、D【解析】

由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.10、D【解析】

連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.11、D【解析】

根據對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數研究的單調性從而得到的圖象;由直線恒過定點,通過數形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據直線與曲線交點個數確定參數范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數的問題,通過確定直線恒過的定點,采用數形結合的方式來進行求解.12、C【解析】

根據韋恩圖可確定所表示集合為,根據一元二次不等式解法和定義域的求法可求得集合,根據補集和交集定義可求得結果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算,涉及到一元二次不等式和函數定義域的求解;關鍵是能夠根據韋恩圖確定所求集合.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:根據題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率14、【解析】

利用平面直角坐標系,設出點E,F的坐標,由可得,利用數量積運算求得,再利用線性規劃的知識求出的最大值.【詳解】建立平面直角坐標系,如圖(1)所示:設,,,即,又,令,其中,畫出圖形,如圖(2)所示:當直線經過點時,取得最大值.故答案為:【點睛】本題考查了向量數量積的坐標運算、簡單的線性規劃問題,解題的關鍵是建立恰當的坐標系,屬于基礎題.15、【解析】

利用遞推關系,等比數列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數列,所以數列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數列,所以,故答案為:.【點睛】該題考查的是有關數列的問題,涉及到的知識點有根據遞推公式求數列的通項公式,屬于簡單題目.16、【解析】

設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.18、(1)證明見解析;(2).【解析】

(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據,轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數可知,,所以,,令,則,當時,為單調遞增函數,且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數,,所以;因為為單調遞增函數,且,因此;因為為整數,且,所以.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.19、(1)(2)9060元【解析】

(1)根據古典概型概率公式和組合數的計算可得所求概率;(2)任選一天,設該天的經濟損失為元,分別求出,,,進而求得數學期望,據此得出該企業一個月經濟損失的數學期望.【詳解】解:(1)設為選取的3天中空氣質量為優的天數,則.(2)任選一天,設該天的經濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業一個月的經濟損失的數學期望為(元).【點睛】本題考查古典概型概率公式和組合數的計算及數學期望,屬于基礎題.20、(1)證明見解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應的線面垂直關系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論