




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省黃石市還地橋鎮南灣初級中學2023-2024學年中考數學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或02.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.143.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.4.對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F,滿足,則C,D,E,F四點【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數圖象上D.是同一個正方形的四個頂點5.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是()A. B. C. D.6.函數的圖像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.關于x的正比例函數,y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-8.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°9.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)10.某市6月份日平均氣溫統計如圖所示,那么在日平均氣溫這組數據中,中位數是()A.8 B.10 C.21 D.2211.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.12.下列幾何體是棱錐的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.滿足的整數x的值是_____.14.使得關于x的分式方程的解為負整數,且使得關于x的不等式組有且僅有5個整數解的所有k的和為_____.15.若x2+kx+81是完全平方式,則k的值應是________.16.我們知道,四邊形具有不穩定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應點C'的坐標為_____.17.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.18.一個圓錐的高為3,側面展開圖是半圓,則圓錐的側面積是_________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙O相交于點F.若的長為,則圖中陰影部分的面積為_____.20.(6分)某景區內從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時間,然后繼續按原速前往乙地,景區從甲地開往乙地的電瓶車每隔半小時發一趟車,速度是,若小華與第1趟電瓶車同時出發,設小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數,行進時間為.如圖畫出了,與的函數圖象.(1)觀察圖,其中,;(2)求第2趟電瓶車距乙地的路程與的函數關系式;(3)當時,在圖中畫出與的函數圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有趟電瓶車駛過.21.(6分)在平面直角坐標系xOy中,函數(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.22.(8分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數,并將得到的數據繪制成了下面兩幅不完整的統計圖.請根據圖中提供的信息,回答下列問題:扇形統計圖中a的值為%,該扇形圓心角的度數為;補全條形統計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?23.(8分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.24.(10分)如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,連接OD,PD,得△OPD。(1)當t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當t>0時,求S與t之間的函數關系式②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.25.(10分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.26.(12分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發,在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發,沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.27.(12分)如圖,在Rt△ABC中,∠C=90°,O為BC邊上一點,以OC為半徑的圓O,交AB于D點,且AD=AC,延長DO交圓O于E點,連接AE.求證:DE⊥AB;若DB=4,BC=8,求AE的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
把x=﹣1代入方程計算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.2、B【解析】試題分析:根據平行四邊形的性質可知AB=CD,AD∥BC,AD=BC,然后根據平行線的性質和角平分線的性質可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質和等腰三角形的性質,解題關鍵是把所求線段轉化為題目中已知的線段,根據等量代換可求解.3、B【解析】
朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.4、A。【解析】∵對于點A(x1,y1),B(x2,y2),,∴如果設C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又∵,∴。∴。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直線上,∴互不重合的四點C,D,E,F在同一條直線上。故選A。5、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數.故選A.6、D【解析】
根據反比例函數中,當,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大,進而得出答案.【詳解】解:函數的圖象位于第四象限.故選:D.【點睛】此題主要考查了反比例函數的性質,正確記憶反比例函數圖象分布的象限是解題關鍵.7、B【解析】
根據正比例函數定義可得m2-3=1,再根據正比例函數的性質可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點睛】此題主要考查了正比例函數的性質和定義,關鍵是掌握正比例函數y=kx(k≠0)的自變量指數為1,當k<0時,y隨x的增大而減小.8、C【解析】
根據四邊形的內角和與直角三角形中兩個銳角關系即可求解.【詳解】解:∵四邊形的內角和為360°,直角三角形中兩個銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點睛】此題主要考查角度的求解,解題的關鍵是熟知四邊形的內角和為360°.9、D【解析】
解決本題抓住旋轉的三要素:旋轉中心O,旋轉方向順時針,旋轉角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據旋轉中心O,旋轉方向順時針,旋轉角度90°,畫圖,從而得A′點坐標為(1,3).故選D.10、D【解析】分析:根據條形統計圖得到各數據的權,然后根據中位數的定義求解.詳解:一共30個數據,第15個數和第16個數都是22,所以中位數是22.故選D.點睛:考查中位數的定義,看懂條形統計圖是解題的關鍵.11、B【解析】根據不等式的性質在不等式兩邊加(或減)同一個數(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數,不等號的方向不變;不等式兩邊乘(或除以)同一個負數,不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數,不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數,不等號的方向不變,正確.故選B.12、D【解析】分析:根據棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據棱錐的概念判斷.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3,1【解析】
直接得出2<<3,1<<5,進而得出答案.【詳解】解:∵2<<3,1<<5,∴的整數x的值是:3,1.故答案為:3,1.【點睛】此題主要考查了估算無理數的大小,正確得出接近的有理數是解題關鍵.14、12.1【解析】
依據分式方程=1的解為負整數,即可得到k>,k≠1,再根據不等式組有1個整數解,即可得到0≤k<4,進而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,
∵分式方程=1的解為負整數,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式組,可得,
∵不等式組有1個整數解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值為1.1或2或2.1或3或3.1,
∴符合題意的所有k的和為12.1,
故答案為12.1.【點睛】本題考查了解一元一次不等式組、分式方程的解,解題時注意分式方程中的解要滿足分母不為0的情況.15、±1【解析】試題分析:利用完全平方公式的結構特征判斷即可確定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案為±1.考點:完全平方式.16、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).17、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯立兩函數解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數與一次函數的交點問題;軸對稱-最短路線問題.18、18π【解析】解:設圓錐的半徑為,母線長為.則解得三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、S陰影=2﹣.【解析】
由切線的性質和平行四邊形的性質得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根據弧長公式求出弧長,得到半徑,即可求出結果.【詳解】如圖,連接AC,∵CD與⊙A相切,∴CD⊥AC,在平行四邊形ABCD中,∵AB=DC,AB∥CD∥BC,∴BA⊥AC,∵AB=AC,∴∠ACB=∠B=45°,∵AD∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE,∴∴的長度為解得R=2,S陰=S△ACD-S扇形=【點睛】此題主要考查圓內的面積計算,解題的關鍵是熟知平行四邊形的性質、切線的性質、弧長計算及扇形面積的計算.20、(1)0.8;2.1;(2);(2)圖像見解析,2【解析】
(1)根據小華走了4千米后休息了一段時間和小華的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的時間,再加上1.5即為b的值;(2)先求出電瓶車的速度,再根據路程=兩地間距-速度×時間即可得出答案;(2)結合的圖象即可畫出的圖象,觀察圖象即可得出答案.【詳解】解:(1),故答案為:0.8;2.1.(2)根據題意得:電瓶車的速度為∴.(2)畫出函數圖象,如圖所示.觀察函數圖象,可知:小華在休息后前往乙地的途中,共有2趟電瓶車駛過.故答案為:2.【點睛】本題主要考查一次函數的應用,能夠從圖象上獲取有效信息是解題的關鍵.21、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】
(1)把A點坐標代入反比例解析式確定出a的值,確定出A坐標,代入一次函數解析式求出b的值;(2)分別求出直線l1與x軸交于點D,再求出直線l2與x軸交于點B,從而得出直線l2與直線l1交于點C坐標,分兩種情況進行討論:①當S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【詳解】(1)∵點A在圖象上∴∴a=3∴A(3,1)∵點A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y=x-2(2)設直線y=x-2與x軸的交點為D∴D(2,0)①當點C在點A的上方如圖(1)∵直線y=-x+m與x軸交點為B∴B(m,0)(m>3)∵直線y=-x+m與直線y=x-2相交于點C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點C在點A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【點睛】此題考查了一次函數與反比例函數的交點問題,三角形的面積,利用了數形結合的思想,熟練掌握待定系數法是解本題的關鍵.22、(1)25,90°;(2)見解析;(3)該市“活動時間不少于5天”的大約有1.【解析】試題分析:(1)根據扇形統計圖的特征即可求得的值,再乘以360°即得扇形的圓心角;(2)先算出總人數,再乘以“活動時間為6天”對應的百分比即得對應的人數;(3)先求得“活動時間不少于5天”的學生人數的百分比,再乘以20000即可.(1)由圖可得該扇形圓心角的度數為90°;(2)“活動時間為6天”的人數,如圖所示:(3)∵“活動時間不少于5天”的學生人數占75%,20000×75%=1∴該市“活動時間不少于5天”的大約有1人.考點:統計的應用點評:統計的應用初中數學的重點,在中考中極為常見,一般難度不大.23、解:(1);(2)存在,P(,);(1)Q點坐標為(0,-)或(0,)或(0,-1)或(0,-1).【解析】
(1)已知點A坐標可確定直線AB的解析式,進一步能求出點B的坐標.點A是拋物線的頂點,那么可以將拋物線的解析式設為頂點式,再代入點B的坐標,依據待定系數法可解.(2)首先由拋物線的解析式求出點C的坐標,在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發現,點P正好在第二象限的角平分線上,聯立直線y=-x與拋物線的解析式,直接求交點坐標即可,同時還要注意點P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點,分類進行討論,找出相關的相似三角形,依據對應線段成比例進行求解即可.【詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標是(1,0).∵A為頂點,∴設拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當∠POB=∠POC時,△POB≌△POC,此時PO平分第二象限,即PO的解析式為y=﹣x.設P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當∠Q1AB=90°時,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當∠Q2BA=90°時,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當∠AQ1B=90°時,作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點坐標為(0,-)或(0,)或(0,﹣1)或(0,﹣1).24、(1)DP=;(2)①;②.【解析】
(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結論;
(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結論;
②分兩種情況,利用三角形的面積建立方程求解即可得出結論.【詳解】解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋轉得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等邊三角形,
∴DP=AP,
∵,
∴,
∴;(2)①當t>0時,如圖1,BD=OP=t,
過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,
∵△OAB為等邊三角形,BE⊥y軸,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD?sin60°=,
∵GH=OE=2,
∴,
∴;②當t≤0時,分兩種情況:
∵點D在x軸上時,如圖2在Rt△ABD中,,
(1)當時,如圖3,BD=OP=-t,,∴,
∴,
∴或,
∴或,
(2)當時,如圖4,BD=OP=-t,,
∴,
∴∴或(舍)∴.【點睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質,旋轉的性質,三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關鍵.25、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數關系式是解答本題的關鍵.26、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據t的值計算CQ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項痹中醫診治課件
- 2025年站臺安全門系統合作協議書
- 2025年1,6-己二醇項目建議書
- 2025年白蘭地相關飲料酒項目建議書
- 畢馬威:2024年香港高管人員薪酬展望
- 五年級小學生演講稿模板(19篇)
- 2025年超聲白內障乳化儀項目建議書
- 博物館預防性保護方案
- 2025年水輪機及輔機項目建議書
- 2025年填充母料項目發展計劃
- 貨架安裝施工方案
- 美羅培南課件
- 128個常用自然拼讀發音規則和1000句生活口語
- 異口同音公開課
- 專利代理人資格考試實務試題及參考答案
- 運用信息技術助力勞動教育創新發展 論文
- GB/T 602-2002化學試劑雜質測定用標準溶液的制備
- GB/T 4074.8-2009繞組線試驗方法第8部分:測定漆包繞組線溫度指數的試驗方法快速法
- 2023年涉縣水庫投資管理運營有限公司招聘筆試模擬試題及答案解析
- 重癥醫學科常用知情告知書
- 二等水準測量記錄表
評論
0/150
提交評論