




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省秦皇島市撫寧縣達標名校2024屆中考數學模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件2.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y23.若分式在實數范圍內有意義,則實數的取值范圍是()A. B. C. D.4.如圖,等邊△ABC的邊長為1cm,D、E分別AB、AC是上的點,將△ADE沿直線DE折疊,點A落在點A′處,且點A′在△ABC外部,則陰影部分的周長為()cmA.1 B.2 C.3 D.45.二次函數y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數y=與一次函數y=bx﹣c在同一坐標系內的圖象大致是()A. B. C. D.6.已知一個多邊形的內角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形7.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.3 B.﹣1 C.﹣3 D.﹣28.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大9.四個有理數﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣310.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.80二、填空題(本大題共6個小題,每小題3分,共18分)11.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.12.閱讀下面材料:在數學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據是______.13.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.14.二次根式中的字母a的取值范圍是_____.15.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結論:①PA=PB;②當OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結論是_____.(把你認為正確結論的序號都填上)16.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.三、解答題(共8題,共72分)17.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點C作CE⊥AD于點E.(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;(2)如圖2,過點C作CF⊥CE,且CF=CE,連接FE并延長交AB于點M,連接BF,求證:AM=BM.18.(8分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.19.(8分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.20.(8分)按要求化簡:(a﹣1)÷,并選擇你喜歡的整數a,b代入求值.小聰計算這一題的過程如下:解:原式=(a﹣1)÷…①=(a﹣1)?…②=…③當a=1,b=1時,原式=…④以上過程有兩處關鍵性錯誤,第一次出錯在第_____步(填序號),原因:_____;還有第_____步出錯(填序號),原因:_____.請你寫出此題的正確解答過程.21.(8分)關于的一元二次方程有實數根.求的取值范圍;如果是符合條件的最大整數,且一元二次方程與方程有一個相同的根,求此時的值.22.(10分)如圖①,二次函數的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.23.(12分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.24.如圖,在矩形ABCD中,E是BC邊上的點,,垂足為F.(1)求證:;(2)如果,求的余切值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.2、D【解析】試題分析:反比例函數y=-的圖象位于二、四象限,在每一象限內,y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數的性質.3、D【解析】
根據分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關鍵是熟練運用分式有意義的條件,本題屬于基礎題型.4、C【解析】
由題意得到DA′=DA,EA′=EA,經分析判斷得到陰影部分的周長等于△ABC的周長即可解決問題.【詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【點睛】本題考查了等邊三角形的性質以及折疊的問題,折疊問題的實質是“軸對稱”,解題關鍵是找出經軸對稱變換所得的等量關系.5、C【解析】
根據二次函數的圖象找出a、b、c的正負,再結合反比例函數、一次函數系數與圖象的關系即可得出結論.【詳解】解:觀察二次函數圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數中k=﹣a<1,∴反比例函數圖象在第二、四象限內;∵一次函數y=bx﹣c中,b<1,﹣c<1,∴一次函數圖象經過第二、三、四象限.故選C.【點睛】本題考查了二次函數的圖象、反比例函數的圖象以及一次函數的圖象,解題的關鍵是根據二次函數的圖象找出a、b、c的正負.本題屬于基礎題,難度不大,解決該題型題目時,根據二次函數圖象找出a、b、c的正負,再結合反比例函數、一次函數系數與圖象的關系即可得出結論.6、D【解析】
根據多邊形的內角和=(n﹣2)?180°,列方程可求解.【詳解】設所求多邊形邊數為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點睛】本題考查根據多邊形的內角和計算公式求多邊形的邊數,解答時要會根據公式進行正確運算、變形和數據處理.7、C【解析】試題分析:根據根與系數的關系可得出兩根的積,即可求得方程的另一根.設m、n是方程x2+kx﹣3=0的兩個實數根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點】根與系數的關系;一元二次方程的解.8、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.9、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.10、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、40°【解析】
直接利用三角形內角和定理得出∠6+∠7的度數,進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.12、兩點確定一條直線;同圓或等圓中半徑相等【解析】
根據尺規作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規作圖方法是解題關鍵.13、(或)【解析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.14、a≥﹣1.【解析】
根據二次根式的被開方數為非負數,可以得出關于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數為非負數是解答本題的關鍵.15、①②【解析】
過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.
∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.
,∵∠AOB+∠APB=180°,
∴點A、O、B、P共圓,且AB為直徑,所以
AB≥OP,故④錯誤.
故答案為:①②.【點睛】本題考查了全等三角形的性質和判定,三角形的內角和定理,坐標與圖形性質,正方形的性質的應用,關鍵是推出AM=BN和推出OA+OB=OM+ON16、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.三、解答題(共8題,共72分)17、(1)2﹣;(2)見解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根據直角三角形30°角的性質可得AC=2CE=2,再得∠ECD=90°-60°=30°,設ED=x,則CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的長;(2)如圖2,連接CM,先證明△ACE≌△BCF,則∠BFC=∠AEC=90°,證明C、M、B、F四點共圓,則∠BCM=∠MFB=45°,由等腰三角形三線合一的性質可得AM=BM.詳解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,設ED=x,則CD=2x,∴CE=x,∴x=1,x=,∴CD=2x=,∴BD=BC﹣CD=AC﹣CD=2﹣;(2)如圖2,連接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四點共圓,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.點睛:本題考查了三角形全等的性質和判定、等腰直角三角形的性質和判定、等腰三角形三線合一的性質、直角三角形30°角的性質和勾股定理,第二問有難度,構建輔助線,證明△ACE≌△BCF是關鍵.18、10【解析】試題分析:根據相似的性質可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應用19、見解析【解析】
由菱形的性質可得,,然后根據角角邊判定,進而得到.【詳解】證明:∵菱形ABCD,∴,,∵,,∴,在與中,,∴,∴.【點睛】本題考查菱形的性質和全等三角形的判定與性質,根據菱形的性質得到全等條件是解題的關鍵.20、①,運算順序錯誤;④,a等于1時,原式無意義.【解析】
由于乘法和除法是同級運算,應當按照從左向右的順序計算,①運算順序錯誤;④當a=1時,等于0,原式無意義.【詳解】①運算順序錯誤;故答案為①,運算順序錯誤;④當a=1時,等于0,原式無意義.故答案為a等于1時,原式無意義.當時,原式【點睛】本題考查了分式的化簡求值,注意運算順序和分式有意義的條件.21、(1);(2)的值為.【解析】
(1)利用判別式的意義得到,然后解不等式即可;(2)利用(1)中的結論得到的最大整數為2,解方程解得,把和分別代入一元二次方程求出對應的,同時滿足.【詳解】解:(1)根據題意得,解得;(2)的最大整數為2,方程變形為,解得,∵一元二次方程與方程有一個相同的根,∴當時,,解得;當時,,解得,而,∴的值為.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數根;當時,方程有兩個相等的實數根;當時,方程無實數根.22、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設過A(1,0),點C(-1,4)兩點的函數解析式為:,得:k2解得:k2過A、C兩點的一次函數解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025大型醫院巡查培訓
- 小學新學期班主任培訓
- 糖尿病護理省級繼續教育
- 培訓機構教研活動
- 2025年大數據工程師資格考試試題及答案
- 2025屆浙江部分地區英語八年級第二學期期末達標檢測模擬試題含答案
- 第4課 希臘城邦和亞歷山大帝國 課件 部編人教版九年級歷史上冊
- 中學生心理健康教育途徑
- 2025年房地產經紀人資格考試試題及答案
- 2025年地方治理與管理碩士入學考試試題及答案
- 體育場館安全用電操作規范
- 老年人尿失禁患者護理
- 大學生創業文具店計劃書
- 職業發展計劃和個人成長
- 溶洞相關知識培訓課件
- 材料設備進場計劃及保證措施
- 機械加工價格表
- 2025年上半年云南省昆明市公安局交通警察支隊招聘勤務輔警200人易考易錯模擬試題(共500題)試卷后附參考答案
- 醫用耗材采購風險管理工作總結
- 催收員26種施壓話術集合5篇
- 承包經營合同(2024版)
評論
0/150
提交評論