




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“角谷猜想”的內容是:對于任意一個大于1的整數,如果為偶數就除以2,如果是奇數,就將其乘3再加1,執行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.92.如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區環境基礎設施投資額逐年增加;B.2011年該地區環境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區2019年的環境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區2019的環境基礎設施投資額為256.5億元.3.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b4.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.25.設,滿足約束條件,則的最大值是()A. B. C. D.6.已知,則的值構成的集合是()A. B. C. D.7.如圖,平面四邊形中,,,,為等邊三角形,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.我國著名數學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內容是“每個大于的偶數可以表示為兩個素數的和”(注:如果一個大于的整數除了和自身外無其他正因數,則稱這個整數為素數),在不超過的素數中,隨機選取個不同的素數、,則的概率是()A. B. C. D.10.設全集,集合,,則集合()A. B. C. D.11.偶函數關于點對稱,當時,,求()A. B. C. D.12.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F分別為,的中點,,則球O的體積為______.14.已知函數恰好有3個不同的零點,則實數的取值范圍為____15.在三棱錐中,三條側棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.16.在中,已知,,則A的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)已知函數(1)已知直線:,:.若直線與關于對稱,又函數在處的切線與垂直,求實數的值;(2)若函數,則當,時,求證:①;②.19.(12分)已知直線的參數方程為(,為參數),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經過點,求直線被曲線截得的線段的長.20.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望.21.(12分)已知函數.(1)討論的單調性;(2)函數,若對于,使得成立,求的取值范圍.22.(10分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
模擬程序運行,觀察變量值可得結論.【詳解】循環前,循環時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環,輸出.故選:B.【點睛】本題考查程序框圖,考查循環結構,解題時可模擬程序運行,觀察變量值,從而得出結論.2、D【解析】
根據圖像所給的數據,對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.3、B【解析】
先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.4、D【解析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.5、D【解析】
作出不等式對應的平面區域,由目標函數的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,屬于基礎題.6、C【解析】
對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.7、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數學運算的能力,屬于較難題.8、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.9、B【解析】
先列舉出不超過的素數,并列舉出所有的基本事件以及事件“在不超過的素數中,隨機選取個不同的素數、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數有:、、、、、,在不超過的素數中,隨機選取個不同的素數,所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數中,隨機選取個不同的素數、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.10、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.11、D【解析】
推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.12、B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.14、【解析】
恰好有3個不同的零點恰有三個根,然后轉化成求函數值域即可.【詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【點睛】已知函數的零點個數求參數的取值范圍是重點也是難點,這類題一般用分離參數的方法,中檔題.15、【解析】
設,可表示出,由三棱錐性質得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關鍵是掌握三棱錐的性質:三條側棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側棱的平方和.16、【解析】
根據正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.18、(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據直線關于直線對稱的直線的求法,求得的方程及其斜率.根據函數在處的切線與垂直列方程,解方程求得的值.(2)①構造函數,利用的導函數證得當時,,由此證得.②由①知成立,整理得成立.利用構造函數法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點.在上取點,易得點關于對稱的點為,即為直線,所以的方程為,即,其斜率為.又因為,所以,,由題意,解得.(2)因為,所以.①令,則,則,且,,時,,單調遞減;時,,單調遞增.因為,所以,因為,所以存在,使時,,單調遞增;時,,單調遞減;時,,單調遞增.又,所以時,,即,所以,即成立.②由①知成立,即有成立.令,即.所以時,,單調遞增;時,,單調遞減,所以,即,因為,所以,所以時,,即時,.【點睛】本小題考查函數圖象的對稱性,利用導數求切線的斜率,利用導數證明不等式等基礎知識;考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想,數形結合思想和應用意識.19、(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經過點,可得的值,再將直線的參數方程代入曲線的標準方程,由直線參數方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數方程為(為參數).將直線的參數方程代入得,由直線參數方程的幾何意義可知,.20、(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數學期望.【詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 當天入出院管理制度
- 律師進村居管理制度
- 微權力工作管理制度
- 心連心請假管理制度
- 快遞站倉庫管理制度
- 急診實訓室管理制度
- 總承包安全管理制度
- 患者出入院管理制度
- 成品物料卡管理制度
- 成都cng管理制度
- 失業保障國際比較-洞察及研究
- 廣東省廣州市天河區2023-2024學年八年級下學期期末歷史試卷(含答案)
- 2025年高考作文全國二卷范文《贈君星火夢照我天地心》
- 2025汾西礦業井下操作技能人員招聘300人(山西)筆試參考題庫附帶答案詳解析
- 2025年家庭教育指導師資格考試試題及答案
- 2025至2030年中國速凍豆角行業投資前景及策略咨詢報告
- 2025年入黨積極分子培訓結業測試題及答案
- 人教版(2024)七年級下冊生物期末復習重點知識點提綱
- 2025年中考語文二輪復習:標點符號 專題練習題(含答案解析)
- 跌倒墜床防范試題及答案
- 2024-2025學年人教版(2024)初中英語七年級下冊(全冊)知識點歸納
評論
0/150
提交評論