2023屆新疆阿克蘇市第一師高級中學數學高三上期末調研試題含解析_第1頁
2023屆新疆阿克蘇市第一師高級中學數學高三上期末調研試題含解析_第2頁
2023屆新疆阿克蘇市第一師高級中學數學高三上期末調研試題含解析_第3頁
2023屆新疆阿克蘇市第一師高級中學數學高三上期末調研試題含解析_第4頁
2023屆新疆阿克蘇市第一師高級中學數學高三上期末調研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,復數,,且為實數,則()A. B. C.3 D.-32.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或3.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.4.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.5.下列與函數定義域和單調性都相同的函數是()A. B. C. D.6.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.47.函數與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.8.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.9.已知向量,,若,則()A. B. C.-8 D.810.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.11.若復數滿足,則的虛部為()A.5 B. C. D.-512.已知集合,,若,則實數的值可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為_______.14.西周初數學家商高在公元前1000年發現勾股定理的一個特例:勾三,股四,弦五.此發現早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數稱為勾股數.現從3,4,5,6,7,8,9,10,11,12,13這11個數中隨機抽取3個數,則這3個數能構成勾股數的概率為__________.15.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.16.某城市為了解該市甲、乙兩個旅游景點的游客數量情況,隨機抽取了這兩個景點20天的游客人數,得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數在內時,甲景點比乙景點多______天.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.18.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張提供了兩種貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經濟利益的角度來考慮,小張應選擇哪種還款方式.參考數據:.19.(12分)高鐵和航空的飛速發展不僅方便了人們的出行,更帶動了我國經濟的巨大發展.據統計,在2018年這一年內從市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了解乘客出行的滿意度,現從中隨機抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數學期望;(3)如果甲將要從市出發到市,那么根據表格中的數據,你建議甲是乘坐高鐵還是飛機?并說明理由.20.(12分)已知圓O經過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.21.(12分)已知數列滿足.(1)求數列的通項公式;(2)設數列的前項和為,證明:.22.(10分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.2、B【解析】

根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.3、D【解析】

根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.4、C【解析】

如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.5、C【解析】

分析函數的定義域和單調性,然后對選項逐一分析函數的定義域、單調性,由此確定正確選項.【詳解】函數的定義域為,在上為減函數.A選項,的定義域為,在上為增函數,不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數,符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數的定義域和單調性,屬于基礎題.6、D【解析】

利用導數的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數的幾何意義,考查運算求解能力,是基礎題7、C【解析】

由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數研究函數性質的基本方法,考查化歸與轉化等數學思想,考查抽象概括、運算求解等數學能力,屬于難題.8、C【解析】

設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.9、B【解析】

先求出向量,的坐標,然后由可求出參數的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.10、A【解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.11、C【解析】

把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.12、D【解析】

由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設為的中點,根據弦長公式,只需最小,在中,根據余弦定理將表示出來,由,得到,結合弦長公式得到,求出點的軌跡方程,即可求解.【詳解】設為的中點,在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點睛】本題考查直線與圓的位置關系、相交弦長的最值,解題的關鍵求出點的軌跡方程,考查計算求解能力,屬于中檔題.14、【解析】

由組合數結合古典概型求解即可【詳解】從11個數中隨機抽取3個數有種不同的方法,其中能構成勾股數的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數學文化,考查組合問題,數據處理能力和應用意識.15、【解析】

設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.16、72【解析】

根據給定的莖葉圖,得到游客人數在內時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數,得到答案.【詳解】由題意,根據給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數中,游客人數在內時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數在內時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(1)的論證,建立空間直角坐標,設平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設,則,又因為,所以.所以.設平面的法向量為,則,即,令,則.于是.又因為,設直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關系、線面成角,還考查空間想象能力以及數形結合思想,屬于中檔題.18、(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,即可由等差數列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據題意,采取等額本息的還款方式,每月還款額為一等比數列,設小張每月還款額為元,由等比數列求和公式及參考數據,即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,記為,表示數列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經濟利益的角度來考慮,小張應選擇等額本金還款方式.【點睛】本題考查了等差數列與等比數列求和公式的綜合應用,數列在實際問題中的應用,理解題意是解決問題的關鍵,屬于中檔題.19、(1)(2)分布列見解析,數學期望(3)建議甲乘坐高鐵從市到市.見解析【解析】

(1)根據分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數學期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機.【詳解】(1)設事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因為在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,此人為老年人概率是,所以,,,所以隨機變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,

參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機的人滿意度均值為:因為,所以建議甲乘坐高鐵從市到市.【點睛】本題主要考查了分層抽樣的應用、古典概型的概率計算、以及離散型隨機變量的分布列和期望的計算,解題關鍵是對題意的理解,概率類型的判斷,屬于中檔題.20、(1);(2)或【解析】

(1)先由題意得出,可得出與的等量關系,然后將點的坐標代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進行分類討論,當直線的斜率不存在時,可求出,然后進行檢驗;當直線的斜率存在時,可設直線的方程為,設點,先由直線與圓相切得出與之間的關系,再將直線的方程與橢圓的方程聯立,由韋達定理,利用弦長公式并結合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經過橢圓的上下頂點,所以橢圓焦距等于短軸長,可得,又點在橢圓上,所以,解得,即橢圓的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論