




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆福建省福州市格致中學數學高一下期末學業水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數列的前項和為,且,則()A. B. C. D.2.在等差數列an中,若a2+A.100 B.90 C.95 D.203.已知集合,,則()A. B. C. D.4.設集合,集合,則()A. B. C. D.5.執行下面的程序框圖,則輸出的的值為()A.10 B.34 C.36 D.1546.若x+2y=4,則2x+4y的最小值是()A.4 B.8 C.2 D.47.設是等比數列,有下列四個命題:①是等比數列;②是等比數列;③是等比數列;④是等差數列.其中正確命題的個數是()A. B. C. D.8.“是第二象限角”是“是鈍角”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要9.執行如下的程序框圖,則輸出的是()A. B.C. D.10.已知數列滿足,,則()A.4 B.-4 C.8 D.-8二、填空題:本大題共6小題,每小題5分,共30分。11.數列的通項,前項和為,則____________.12.在銳角△中,,,,則________13.已知三棱錐的底面是腰長為2的等腰直角三角形,側棱長都等于,則其外接球的體積為______.14.在數列中,,,則________.15.已知直線l過點P(-2,5),且斜率為-,則直線l的方程為________.16.已知關于實數x,y的不等式組構成的平面區域為,若,使得恒成立,則實數m的最小值是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數列的各項均為正數,對任意,它的前項和滿足,并且,,成等比數列.(1)求數列的通項公式;(2)設,為數列的前項和,求.18.已知等差數列滿足,的前項和為.(1)求及;(2)記,求19.已知是第三象限角,.(1)化簡;(2)若,求的值.20.已知函數(1)若關于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.21.已知數列的前n項和為,,.(1)證明:數列為等比數列;(2)證明:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
通過和關系,計算通項公式,再計算,代入數據得到答案.【詳解】,取,兩式相減得:是首項為4,公比為2的等比數列.故答案選D【點睛】本題考查了等比數列的通項公式,前N項和,意在考查學生的計算能力.2、B【解析】
利用等差數列的性質,即下標和相等對應項的和相等,得到a2【詳解】∵數列an為等差數列,a∴a【點睛】考查等差數列的性質、等差中項,考查基本量法求數列問題.3、D【解析】依題意,故.4、B【解析】
已知集合A,B,取交集即可得到答案.【詳解】集合,集合,則故選B【點睛】本題考查集合的交集運算,屬于簡單題.5、B【解析】試題分析:第一次循環:第二次循環:第三次循環:第四次循環:結束循環,輸出,選B.考點:循環結構流程圖【名師點睛】算法與流程圖的考查,側重于對流程圖循環結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環結構、偽代碼,其次要重視循環起點條件、循環次數、循環終止條件,更要通過循環規律,明確流程圖研究的數學問題,是求和還是求項.6、B【解析】試題分析:由,當且僅當時,即等號成立,故選B.考點:基本不等式.7、C【解析】
設,得到,,,再利用舉反例的方式排除③【詳解】設,則:,故是首項為,公比為的等比數列,①正確,故是首項為,公比為的等比數列,②正確取,則,不是等比數列,③錯誤.,故是首項為,公差為的等差數列,④正確故選:C【點睛】本題考查了等差數列,等比數列的判斷,找出反例可以快速的排除選項,簡化運算,是解題的關鍵.8、B【解析】
由α是鈍角可得α是第二象限角,反之不成立,則答案可求.【詳解】若α是鈍角,則α是第二象限角;反之,若α是第二象限角,α不一定是鈍角,如α=﹣210°.∴“α是第二象限角”是“α是鈍角”的必要非充分條件.故選B.【點睛】本題考查鈍角、象限角的概念,考查了充分必要條件的判斷方法,是基礎題.9、A【解析】
列出每一步算法循環,可得出輸出結果的值.【詳解】滿足,執行第一次循環,,;成立,執行第二次循環,,;成立,執行第三次循環,,;成立,執行第四次循環,,;成立,執行第五次循環,,;成立,執行第六次循環,,;成立,執行第七次循環,,;成立,執行第八次循環,,;不成立,跳出循環體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.10、C【解析】
根據遞推公式,逐步計算,即可求出結果.【詳解】因為數列滿足,,所以,,.故選C【點睛】本題主要考查由遞推公式求數列中的項,逐步代入即可,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
根據數列的通項公式,求得數列的周期為4,利用規律計算,即可求解.【詳解】由題意,數列的通項,可得,,得到數列是以4項為周期的形式,所以=.故答案為:7.【點睛】本題主要考查了數列的求和問題,其中解答中根據數列的通項公式求得數列的周期,以及各項的變化規律是解答的關鍵,屬于基礎題,著重考查了.12、【解析】
由正弦定理,可得,求得,即可求解,得到答案.【詳解】由正弦定理,可得,所以,又由△為銳角三角形,所以.故答案為:.【點睛】本題主要考查了正弦定理得應用,其中解答中熟記正弦定理,準確計算是解答的關鍵,著重考查了計算能力,屬于基礎題.13、【解析】
先判斷球心在上,再利用勾股定理得到半徑,最后計算體積.【詳解】三棱錐的底面是腰長為2的等腰直角三角形,側棱長都等于為中點,為外心,連接,平面球心在上設半徑為故答案為【點睛】本題考查了三棱錐外接球的體積,意在考查學生的空間想象能力和計算能力.14、【解析】
由遞推公式可以求出,可以歸納出數列的周期,從而可得到答案.【詳解】由,,.,可推測數列是以3為周期的周期數列.所以。故答案為:【點睛】本題考查數量的遞推公式同時考查數列的周期性,屬于中檔題.15、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.16、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區域內的點與定點距離的平方,因此結合平面區域即可求出結果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標函數,則目標函數表示平面區域內的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點睛】本題主要考查簡單的線性規劃問題,只需分析清楚目標函數的幾何意義,即可結合可行域來求解,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)根據與的關系,利用臨差法得到,知公差為3;再由代入遞推關系求;(2)觀察數列的通項公式,相鄰兩項的和有規律,故采用并項求和法,求其前項和.【詳解】(1)對任意,有,①當時,有,解得或.當時,有.②①-②并整理得.而數列的各項均為正數,.當時,,此時成立;當時,,此時,不成立,舍去.,.(2).【點睛】已知與的遞推關系,利用臨差法求時,要注意對下標與分兩種情況,即;數列求和時要先觀察通項特點,再決定采用什么方法.18、(1),(2)【解析】
(1)利用等差數列的通項公式,結合,可以得到兩個關于首項和公差的二元一次方程,解這個方程組即可求出首項和公差,最后利用等差數列的通項公式和前項和公式求出及;(2)利用裂項相消法可以求出.【詳解】解:(1)設等差數列的公差為d,(2)由(1)知:【點睛】本題考查了等差數列的通項公式和前項和公式,考查了裂項相消法求數列前項和,考查了數學運算能力.19、(1);(2).【解析】
(1)由誘導公式變形即得;(2)同樣用誘導公式化簡后,利用平方關系求值.【詳解】(1);(2),,又是第三象限角,∴,∴.【點睛】本題考查誘導公式,考查同角間的三角函數關系.在用平方關系示三角函數值時,要注意確定角的范圍.20、(1);(2)【解析】
(1)不等式可化為,而解集為,可利用韋達定理或直接代入即可得到答案;(2)法一:討論和時,分離參數利用均值不等式即可得到取值范圍;法二:利用二次函數在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數的關系可知,解得,經檢驗時滿足題意.法二:由題意知,原不等式所對應的方程的兩個實數根為和4,將(或4)代入方程計算可得,經檢驗時滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當且僅當時取等號,所以,即.故實數的取值范圍為.法二:二次函數的對稱軸為.①若,即,函數在上單調遞增,恒成立,故;②若,即,此時在上單調遞減,在上單調遞增,由得.故;③若,即,此時函數在上單調遞減,由得,與矛盾,故不存在.綜上所述,實數的取值范圍為.【點睛】本題主要考查一元二次不等式的性質,不等式恒成立中含參問題,意在考查學生的分析能力,計算能力及轉化能力,難度較大.21、(1)證明見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新型天然添加劑研究-洞察闡釋
- 中國自吸供水泵行業市場發展前景及發展趨勢與投資戰略研究報告(2024-2030)
- 2025年中國縮微存儲檢索設備行業發展運行現狀及投資潛力預測報告
- 雪地徒步活動的文化價值探索-洞察闡釋
- 水草布行業深度研究分析報告(2024-2030版)
- 2024-2030年中國無線電射頻識別行業市場發展監測及投資潛力預測報告
- 教育科技發展下的教學評估變革研究
- 中國中小型農具行業發展潛力分析及投資方向研究報告
- 2025年海龜養殖項目節能評估報告(節能專)
- 中國公共航道建設行業市場深度調查評估及投資方向研究報告
- 2025年全國新高考II卷高考全國二卷真題英語試卷(真題+答案)
- 江蘇省揚州市2023-2024學年高一下學期6月期末 英語試卷(含答案無聽力)
- 浙江省溫州市樂清市2022-2023學年五年級下學期6月期末科學試題
- 2025年中國城市禮物發展白皮書
- 2024年陜西省西安市初中學業水平模擬考試地理試卷
- 口腔門診放射管理制度
- cpsm考試試題及答案
- 匯川技術高壓變頻器技術標準教材
- 2025年玻璃鋼圍網漁船項目市場調查研究報告
- 完整版新修訂《厲行節約反對浪費條例》(課件)
- 廣東省東莞市2025屆九年級下學期中考二模地理試卷(含答案)
評論
0/150
提交評論