




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省南充市高平中學高二數學文測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設雙曲線的左、右兩焦點分別為F1、F2,P是雙曲線上一點,點P到雙曲線中心的距離等于雙曲線焦距的一半,且,則雙曲線離心率是()A. B. C. D.參考答案:A【分析】由點P到雙曲線中心的距離等于雙曲線焦距的一半,根據直角三角形的性質,可得,得到,即即,再根據離心率的定義,即可求解。【詳解】由題意,不妨設點在雙曲線的右支上,則,因為,所以,因為點到雙曲線中心的距離等于雙曲線焦距的一半可知,根據直角三角形的性質,可得,所以,即,得.所以雙曲線的離心率,故選:A.【點睛】本題考查了雙曲線的幾何性質——離心率的求解,其中根據條件轉化為圓錐曲線的離心率的方程是解答的關鍵.求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).2.若動點A,B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,則AB的中點M到原點的距離的最小值為()A.3
B.2
C.3
D.4參考答案:A3.定義在R上的函數f(x)滿足f(-x)=-f(x+4),當x>2時,f(x)單調遞增,如果x1+x2<4,且(x1-2)(x2–2)<0,則f(x1)+f(x2)的值為(
)A.恒小于0
B.恒大于0
C.可能為0
D.可正可負參考答案:A4.已知復數,則(
)A.
B.
C.
D.參考答案:A略5.已知某程序框圖如圖所示,則執行該程序后輸出的結果是()A.
B.-1C.2
D.1參考答案:A6.如圖,一個平面圖形的斜二測畫法的直觀圖是一個邊長為a的正方形,則原平面圖形的面積為(
)A.a2 B.a2 C.2a2 D.2a2參考答案:C【考點】斜二測法畫直觀圖.【專題】計算題;空間位置關系與距離.【分析】由斜二測畫法的規則知在已知圖形平行于x軸的線段,在直觀圖中畫成平行于x′軸,長度保持不變,已知圖形平行于y軸的線段,在直觀圖中畫成平行于y′軸,且長度為原來一半.由于y′軸上的線段長度為a,故在平面圖中,其長度為2a,且其在平面圖中的y軸上,由此可以求得原平面圖形的面積.【解答】解:由斜二測畫法的規則知與x′軸平行的線段其長度不變以及與橫軸平行的性質不變,正方形對角線在y′軸上,可求得其長度為a,故在平面圖中其在y軸上,且其長度變為原來的2倍,長度為2a,∴原平面圖形的面積為=故選:C.【點評】本題考查的知識點是平面圖形的直觀圖,其中斜二測畫法的規則,能夠快速的在直觀圖面積和原圖面積之間進行轉化.7.有下列四個命題,①若點P在橢圓=1上,左焦點為F,則|PF|長的取值范圍為[1,5];②方程x=表示雙曲線的一部分;③過點(0,2)的直線l與拋物線y2=4x有且只有一個公共點,則這樣的直線l共有3條;④函數f(x)=x3﹣2x2+1在(﹣1,2)上有最小值,也有最大值.其中真命題的個數是()A.1 B.2 C.3 D.4參考答案:C【考點】命題的真假判斷與應用.【分析】根據橢圓的性質,可判斷①;根據雙曲線的標準方程,可判斷②;根據直線與拋物線的位置關系,可判斷③;分析函數的最值,可判斷④.【解答】解:橢圓=1的a=3.c=2,若點P在橢圓=1上,左焦點為F,|PF|長的最小值為a﹣c=1,最大值為a+c=5,則|PF|長的取值范圍為[1,5],故①正確;②方程x=可化為:x2﹣y2=1,x≥0,表示雙曲線的一部分,故②正確;③過點(0,2)的直線l與拋物線y2=4x有且只有一個公共點,則直線與拋物線相切,或與對稱軸平行,則這樣的直線l共有3條,故③正確;④函數f(x)=x3﹣2x2+1的導數f′(x)=3x2﹣4x2,令f′(x)=0,則x=0,或x=,由f(﹣1)=﹣2,f()=;f(0)=1,f(2)=1,故在(﹣1,2)上無最小值,有最大值.故④錯誤;故選:C8.已知命題,,則
()A.,
B.,C.,
D.,參考答案:B9.不解三角形,確定下列判斷中正確的是(
)A.b=9,c=10,B=60°,無解
B.a=7,b=14,A=30°,有兩解C.a=6,b=9,A=45°,有兩解
D.a=30,b=25,A=150°,有一解參考答案:DA選項,兩解,錯。B選項,,一解,錯。C選項,,一解,錯。D.選項,A為鈍角,,一解,正確,選D.10.直線l過點A(1,2),在x軸上的截距取值范圍是(﹣3,3),其斜率取值范圍是()A.﹣1 B.k>1或k C.k或k<1 D.k或k<﹣1參考答案:D【考點】直線的圖象特征與傾斜角、斜率的關系.【分析】直接利用直線斜率公式求出兩個端點的斜率,即可得到結果.【解答】解:因為直線l過點A(1,2),在x軸上的截距取值范圍是(﹣3,3),所以直線端點的斜率分別為:=﹣1,=,如圖:所以k或k<﹣1.故選D.二、填空題:本大題共7小題,每小題4分,共28分11.若是定義在R上的奇函數,且滿足,給出下列4個結論:
(1);
(2)是以4為周期的函數;
(3);
(4)的圖像關于直線對稱;
其中所有正確結論的序號是
參考答案:(1)(2)(3)12.已知=(1,1,0),=(﹣1,0,2),則|2﹣|=.參考答案:【考點】空間向量的加減法.【專題】計算題;轉化思想;綜合法;空間向量及應用.【分析】利用平面向量坐標運算公式求出﹣,由此能求出|2﹣|.【解答】解:∵=(1,1,0),=(﹣1,0,2),∴﹣=(2,2,0)﹣(﹣1,0,2)=(3,2,﹣2),∴|2﹣|==.故答案為:.【點評】本題考查向量的模的求法,是基礎題,解題時要認真審題,注意空間向量坐標運算法則的合理運用.13.若函數f(x)=loga(4﹣ax)在區間[1,2]上單調遞減,則a的范圍為.參考答案:(1,2)【考點】復合函數的單調性.【專題】計算題;函數思想;分析法;函數的性質及應用.【分析】由對數式的底數大于0可得內函數t=4﹣ax為減函數,結合復合函數的單調性可得a>1,求出內函數在[1,2]上的最小值,再由最小值大于0求得a的范圍,取交集得答案.【解答】解:∵a>0,∴函數t=4﹣ax為減函數,要使函數f(x)=loga(4﹣ax)在區間[1,2]上單調遞減,則外函數y=logat為定義域內的增函數,∴a>1,又內函數t=4﹣ax為減函數,∴內函數t=4﹣ax在[1,2]上的最小值為4﹣2a.由4﹣2a>0,得a<2.∴a的范圍為(1,2).故答案為:(1,2).【點評】本題考查與對數函數有關的復合函數的單調性,復合的兩個函數同增則增,同減則減,一增一減則減,注意對數函數的定義域是求解的前提,考查學生發現問題解決問題的能力,是中檔題.14.定義域為R的函數,若關于的函數有5個不同的零點,則▲
.參考答案:略15.按流程圖的程序計算,若開始輸入的值為,則輸出的的值是
參考答案:231試題分析:根據框圖的循環結構,依次;;。跳出循環輸出。考點:算法程序框圖。16.設函數f(x)=ex(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整數x0,使得f(x0)<0,則a的取值范圍是.參考答案:[,1)【考點】函數恒成立問題.【專題】計算題;數形結合;數形結合法;函數的性質及應用.【分析】設g(x)=ex(2x﹣1),y=ax﹣a,則存在唯一的整數x0,使得g(x0)在直線y=ax﹣a的下方,由此利用導數性質能求出a的取值范圍.【解答】解:函數f(x)=ex(2x﹣1)﹣ax+a,其中a<1,設g(x)=ex(2x﹣1),y=ax﹣a,∵存在唯一的整數x0,使得f(x0)<0,∴存在唯一的整數x0,使得g(x0)在直線y=ax﹣a的下方,∵g′(x)=ex(2x+1),∴當x<﹣時,g′(x)<0,∴當x=﹣時,[g(x)]min=g(﹣)=﹣2e.當x=0時,g(0)=﹣1,g(1)=e>0,直線y=ax﹣a恒過(1,0),斜率為a,故﹣a>g(0)=﹣1,且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得.∴a的取值范圍是[,1).故答案為:[,1).【點評】本題考查實數的取值范圍的求法,是中檔題,解題時要認真審題,注意導數性質的合理運用.17.當時,有,則a=__________.參考答案:1【分析】利用復數代數形式的乘除運算化簡,復數相等的條件列式求解a值.【詳解】∵(1﹣i)(a+i)=(a+1)+(1﹣a)i,∴1﹣a=0,即a=1.故答案為:1.【點睛】本題考查復數代數形式的乘除運算,考查復數的分類,是基礎題.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.我市三所重點中學進行高二期末聯考,共有6000名學生參加,為了了解數學學科的學習情況,現從中隨機抽取若干名學生在這次測試中的數學成績,制成如下頻率分布表:分組頻數頻率[80,90)①②[90,100)
0.050[100,110)
0.200[110,120)360.300[120,130)
0.275[130,140)12③[140,150)
0.50合計
④(1)根據頻率分布表,推出①,②,③,④處的數字分別為:、、、.(2)在所給的坐標系中畫出[80,150]上的頻率分布直方圖;(3)根據題中的信息估計總體:①120分及以上的學生人數;②成績在[127,150]中的概率.參考答案:(1)3、0.025、0.100、1.(2)(3)見解析【考點】列舉法計算基本事件數及事件發生的概率;頻率分布直方圖.【專題】計算題;圖表型;概率與統計.【分析】(1)根據頻率分步表中所給的頻率和頻數,根據樣本容量,頻率和頻數之間的關系得到表中要求填寫的數字.(2)根據所給的頻率分布表所給的數據,畫出頻率分步直方圖.(3)用這個區間上的頻率乘以樣本容量,得到這個區間上的頻數,用每一個區間上的中間值,乘以這個區間的頻率,得到平均值,把各個部分的頻率相加,得到要求的頻率【解答】解:(1)先做出③對應的數字,=0.1,∴②處的數字是1﹣0.05﹣0.2﹣0.3﹣0.275﹣0.1﹣0.05=0.025∴①處的數字是0.025×120=3,④處的數字是1,故答案為:3;0.025;0.1;1(2)[80,150]上的頻率分布直方圖如下圖所示:(3)①(0.275+0.1+0.05)×6000=2550,②0.3×0.275+0.1+0.05=0.2325【點評】本題考查頻率分步直方圖,考查畫出頻率分步直方圖,考查利用頻率分步直方圖,本題是一個基礎題,題目雖然有點大,但是考查的知識點比較簡單.19.如圖:直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=AC=BC=2,D為AB中點.(1)求證:BC1∥平面A1CD;(2)求二面角D﹣CA1﹣A的正切值.參考答案:【考點】二面角的平面角及求法;直線與平面平行的判定.【分析】(1)連接AC1交A1C于O點,連接DO,則O為AC1的中點,由D為AB中點,知DO∥BC1,由此能夠證明BC1∥平面A1CD.(2)以CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標系,利用向量法能夠求出二面角D﹣CA1﹣A的正切值.【解答】(1)證明:連接AC1交A1C于O點,連接DO,則O為AC1的中點,∵D為AB中點,∴DO∥BC1,又∵DO?平面A1CD,BC1?平面A1CD,∴BC1∥平面A1CD.(2)解:以CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標系,∵直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=AC=BC=2,D為AB中點.∴=(﹣2,2,2),設二面角D﹣CA1﹣A的大小為θ,則∵平面ACA1的法向量是=(0,1,0)∴cosθ==,∴tanθ=,∴二面角D﹣CA1﹣A的正切值是.20.冪函數是偶函數且在區間上單調遞減。①求函數②討論的奇偶性.參考答案:
略21.設各項均為正數的數列{an}的前n項和為Sn,且滿足2Sn2﹣(3n2+3n﹣2)Sn﹣3(n2+n)=0(n∈N*).(1)求數列{an}的通項公式;(2)設bn=,求數列{bn}的前n項和Tn.參考答案:【考點】8H:數列遞推式;8E:數列的求和.【分析】(1)由可得,n=1時,,又S1=a1,可得a1.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論