




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省福州瑯岐中學2024屆數學高三第一學期期末經典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.2.已知復數z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.4.在一個數列中,如果,都有(為常數),那么這個數列叫做等積數列,叫做這個數列的公積.已知數列是等積數列,且,,公積為,則()A. B. C. D.5.若復數(為虛數單位)的實部與虛部相等,則的值為()A. B. C. D.6.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.7.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值8.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.909.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.710.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.11.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則12.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.14.設滿足約束條件,則的取值范圍為__________.15.點是曲線()圖象上的一個定點,過點的切線方程為,則實數k的值為______.16.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經過,則點到拋物線頂點的距離的最小值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,(1)求的最小正周期及單調遞增區間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.18.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設、是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.19.(12分)已知函數,函數,其中,是的一個極值點,且.(1)討論的單調性(2)求實數和a的值(3)證明20.(12分)已知數列滿足,,數列滿足.(Ⅰ)求證數列是等比數列;(Ⅱ)求數列的前項和.21.(12分)某企業質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業是否對該箱余下的所有零件進行檢驗?請說明理由.22.(10分)已知函數.(1)討論函數f(x)的極值點的個數;(2)若f(x)有兩個極值點證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.2、C【解析】分析:根據復數的運算,求得復數z,再利用復數的表示,即可得到復數對應的點,得到答案.詳解:由題意,復數z=2i1-i所以復數z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數的四則運算及復數的表示,其中根據復數的四則運算求解復數z是解答的關鍵,著重考查了推理與運算能力.3、D【解析】
根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.4、B【解析】
計算出的值,推導出,再由,結合數列的周期性可求得數列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數列求和,考查了數列的新定義,推導出數列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.5、C【解析】
利用復數的除法,以及復數的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復數的除法運算,復數的概念運用.6、A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.7、B【解析】
根據平行的傳遞性判斷A;根據面面平行的定義判斷B;根據線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.8、A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.9、D【解析】
利用已知條件,表示出向量,然后求解向量的數量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數量積運算,關鍵是利用基向量表示所求向量.10、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.11、D【解析】
利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.12、C【解析】
根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.14、【解析】
由題意畫出可行域,轉化目標函數為,數形結合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉化目標函數為,通過平移直線,數形結合可知:當直線過點A時,直線截距最大,z最小;當直線過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.【點睛】本題考查了簡單的線性規劃,考查了數形結合思想,屬于基礎題.15、1【解析】
求出導函數,由切線斜率為4即導數為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數的幾何意義,函數圖象某點處的切線的斜率就是該點處導數值.本題屬于基礎題.16、【解析】
根據拋物線,不妨設,取,通過求導得,,再根據以線段為直徑的圓恰好經過,則,得到,兩式聯立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2【點睛】本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的最小正周期為:;函數單調遞增區間為:;(2).【解析】
(1)根據誘導公式,結合二倍角的正弦公式、輔助角公式把函數的解析式化簡成余弦型函數解析式形式,利用余弦型函數的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數單調遞增,所以函數單調遞增區間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數學運算能力.18、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關系(互為相反數),然后設直線的方程為,將此直線的方程與橢圓方程聯立,求出點的坐標,注意到直線與的斜率之間的關系得到點的坐標,最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設直線代入橢圓方程,化簡得,其一解為,另一解為,可求,用代入得,,為定值.考點:1.橢圓的方程;2.直線與橢圓的位置關系;3.兩點間連線的斜率19、(1)在區間單調遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內,再次求導,可得在區間上恒成立,從而可得結論;(2)由,可得,由可得,聯立解方程組可得結果;(3)由(1)知在區間單調遞增,可證明,取,可得,而,利用裂項相消法,結合放縮法可得結果.【詳解】(1)由已知可得函數的定義域為,且,令,則有,由,可得,可知當x變化時,的變化情況如下表:1-0+極小值,即,可得在區間單調遞增;(2)由已知可得函數的定義域為,且,由已知得,即,①由可得,,②聯立①②,消去a,可得,③令,則,由(1)知,,故,在區間單調遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區間單調遞增,故當時,,,可得在區間單調遞增,因此,當時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導數研究函數的單調性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導數證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構造函數,利用導數研究函數的單調性,求出函數的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結合已解答的問題把要證的不等式變形,并運用已證結論先行放縮,然后再化簡或者進一步利用導數證明.20、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數列的定義結合得出數列是等比數列(Ⅱ)數列是“等比-等差”的類型,利用分組求和即可得出前項和.【詳解】解:(Ⅰ)當時,,故.當時,,則,,數列是首項為,公比為的等比數列.(Ⅱ)由(Ⅰ)得,,,.【點睛】(Ⅰ)證明數列是等比數列可利用定義法得出(Ⅱ)采用分組求和:把一個數列分成幾個可以直接求和的數列.21、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】
(1)計算的頻率,并且與進行比較,判斷中位數落在的區間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據余下零件個數服從二項分布,可得余下零件個數的期望值,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 在線教育平臺用戶增長與留存策略內容營銷報告
- 農田水利設施改造與農業保險融合發展研究報告
- 保安證的考試試題及答案
- 航空航天行業2025年高精度加工技術市場潛力與機遇報告001
- 安全專工招聘試題及答案
- 安全技能比賽試題及答案
- 安全工作規定試題及答案
- 基于核心素養培訓課件
- 2025年商業地產項目數字化運營與客戶滿意度提升的個性化服務模式創新實施案例分析報告
- 御膳培訓標準課件圖片
- 明陽風機培訓課件
- 委外加工流程
- 住院醫囑審核登記表-9月上
- Q∕SY 05010-2016 油氣管道安全目視化管理規范
- 藍海華騰變頻器說明書
- 漿砌塊石工程施工程序、施工方法
- 中國海洋大學論文封面模板
- 遵義會議-(演示)(課堂PPT)
- 訂單(英文范本)PurchaseOrder
- 雨污水合槽溝槽回填施工專項方案(優.選)
- 預焊接工藝規程pWPS
評論
0/150
提交評論