2023年山西省晉中學市太谷縣九年級數學第一學期期末學業水平測試試題含解析_第1頁
2023年山西省晉中學市太谷縣九年級數學第一學期期末學業水平測試試題含解析_第2頁
2023年山西省晉中學市太谷縣九年級數學第一學期期末學業水平測試試題含解析_第3頁
2023年山西省晉中學市太谷縣九年級數學第一學期期末學業水平測試試題含解析_第4頁
2023年山西省晉中學市太谷縣九年級數學第一學期期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年山西省晉中學市太谷縣九年級數學第一學期期末學業水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知有理數a,b在數軸上表示的點如圖所示,則下列式子中正確的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>02.對于拋物線,下列說法中錯誤的是()A.頂點坐標為B.對稱軸是直線C.當時,隨的增大減小D.拋物線開口向上3.二次函數(m是常數),當時,,則m的取值范圍為()A.m<0 B.m<1 C.0<m<1 D.m>14.如圖,平行于BC的直線DE把△ABC分成的兩部分面積相等,則為()A. B. C. D.5.拋物線,下列說法正確的是()A.開口向下,頂點坐標 B.開口向上,頂點坐標C.開口向下,頂點坐標 D.開口向上,頂點坐標6.已知反比例函數,下列結論;①圖象必經過點;②圖象分布在第二,四象限;③在每一個象限內,y隨x的增大而增大.其中正確的結論有()個.A.3 B.2 C.1 D.07.如圖,二次函數y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結論:①1a﹣b=0;②(a+c)1<b1;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1)1﹣1.其中正確的是()A.①③ B.②③ C.②④ D.③④8.下列四個幾何體中,主視圖為圓的是()A. B. C. D.9.如圖,平行四邊形的四個頂點分別在正方形的四條邊上.,分別交,,于點,,,且.要求得平行四邊形的面積,只需知道一條線段的長度.這條線段可以是()A. B. C. D.10.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平行四邊形ABCD中,AE:BE=2:1,F是AD的中點,射線EF與AC交于點G,與CD的延長線交于點P,則的值為_____.12.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則的面積為_____________.13.若反比例函數y=的圖象與一次函數y=﹣x+3的圖象的一個交點到x軸的距離為1,則k=_____.14.已知點P(x1,y1)和Q(2,y2)在二次函數y=(x+k)(x﹣k﹣2)的圖象上,其中k≠0,若y1>y2,則x1的取值范圍為_____.15.一個盒中裝有4個均勻的球,其中2個白球,2個黑球,今從中任取出2個球,“兩球同色”與“兩球異色”的可能性分別記為,則與的大小關系為__________.16.若=,則的值為________.17.已知某二次函數圖像的最高點是坐標原點,請寫出一個符合要求的函數解析式:_______.18.若,則_______.三、解答題(共66分)19.(10分)如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點E(1)判斷直線PD是否為⊙O的切線,并說明理由;(2)如果∠BED=60°,PD=,求PA的長;(3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.20.(6分)在平面直角坐標系xOy中,△ABC的位置如圖所示.

(1)分別寫出△ABC各個頂點的坐標;

(2)分別寫出頂點A關于x軸對稱的點A′的坐標、頂點B關于y軸對稱的點B′的坐標及頂點C關于原點對稱的點C′的坐標;

(3)求線段BC的長.21.(6分)用配方法解方程:22.(8分)如圖,點A、B、C、D是⊙O上的四個點,AD是⊙O的直徑,過點C的切線與AB的延長線垂直于點E,連接AC、BD相交于點F.(1)求證:AC平分∠BAD;(2)若⊙O的半徑為,AC=6,求DF的長.23.(8分)如圖,已知△ABC內接于⊙O,且AB=AC,直徑AD交BC于點E,F是OE上的一點,使CF∥BD.(1)求證:BE=CE;(2)若BC=8,AD=10,求四邊形BFCD的面積.24.(8分)如圖,在△ABC中,AB=AC,點D為BC的中點,經過AD兩點的圓分別與AB,AC交于點E、F,連接DE,DF.(1)求證:DE=DF;(2)求證:以線段BE+CF,BD,DC為邊圍成的三角形與△ABC相似,25.(10分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1226.(10分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內接水.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據數軸判斷出a、b的符號和取值范圍,逐項判斷即可.【詳解】解:從圖上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故選項A符合題意,選項B不合題意;a﹣b>0,故選項C不合題意;ab<0,故選項D不合題意.故選:A.【知識點】本題考查了數軸、有理數的加法、減法、乘法,根據數軸判斷出a、b的符號,熟知有理數的運算法則是解題關鍵.2、C【分析】A.將拋物線一般式化為頂點式即可得出頂點坐標,由此可判斷A選項是否正確;B.根據二次函數的對稱軸公式即可得出對稱軸,由此可判斷B選項是否正確;C.由函數的開口方向和頂點坐標即可得出當時函數的增減性,由此可判斷C選項是否正確;D.根據二次項系數a可判斷開口方向,由此可判斷D選項是否正確.【詳解】,∴該拋物線的頂點坐標是,故選項A正確,對稱軸是直線,故選項B正確,當時,隨的增大而增大,故選項C錯誤,,拋物線的開口向上,故選項D正確,故選:C.【點睛】本題考查二次函數的性質.對于二次函數y=ax2+bx+c(a≠0),若a>0,當x≤時,y隨x的增大而減小;當x≥時,y隨x的增大而增大.若a<0,當x≤時,y隨x的增大而增大;當x≥時,y隨x的增大而減小.在本題中能將二次函數一般式化為頂點式(或會用頂點坐標公式計算)得出頂點坐標是解決此題的關鍵.3、D【分析】根據二次函數的性質得出關于m的不等式,求出不等式的解集即可.【詳解】∵二次函數,∴圖像開口向上,與x軸的交點坐標為(1,0),(m-1,0),∵當時,,∴m-1>0,∴m>1.故選D.【點睛】本題考查了二次函數的性質和圖象和解一元一次不等式,能熟記二次函數的性質是解此題的關鍵.4、D【分析】先證明△ADE∽△ABC,然后根據相似三角形的面積的比等于相似比的平方求解即可.【詳解】∵BC∥DE,∴△ADE∽△ABC,∵DE把△ABC分成的兩部分面積相等,∴△ADE:△ABC=1:2,∴.故選D.【點睛】本題主要考查了相似三角形的判定與性質,平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構成的三角形與原三角形相似;相似三角形面積的比等于相似比的平方.5、C【分析】直接根據頂點式即可得出頂點坐標,根據a的正負即可判斷開口方向.【詳解】∵,∴拋物線開口向下,由頂點式的表達式可知拋物線的頂點坐標為,∴拋物線開口向下,頂點坐標故選:C.【點睛】本題主要考查頂點式的拋物線的表達式,掌握a對開口方向的影響和頂點坐標的確定方法是解題的關鍵.6、A【分析】根據反比例函數的圖像與性質解答即可.【詳解】①∵-1×1=-1,∴圖象必經過點,故①正確;②∵-1<0,圖象分布在第二,四象限,故②正確;③∵-1<0,∴在每一個象限內,y隨x的增大而增大,故③正確.故選A.【點睛】本題考查了反比例函數的圖像與性質,反比例函數(k是常數,k≠0)的圖像是雙曲線,當k>0,反比例函數圖象的兩個分支在第一、三象限,在每一象限內,y隨x的增大而減小;當k<0,反比例函數圖象的兩個分支在第二、四象限,在每一象限內,y隨x的增大而增大.7、D【解析】分析:根據二次函數圖象與系數之間的關系即可求出答案.詳解:①圖象與x軸交于點A(﹣1,0),B(3,0),∴二次函數的圖象的對稱軸為x==1,∴=1,∴1a+b=0,故①錯誤;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②錯誤;③由圖可知:當﹣1<x<3時,y<0,故③正確;④當a=1時,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正確;故選:D.點睛:本題考查二次函數圖象的性質,解題的關鍵是熟知二次函數的圖象與系數之間的關系,本題屬于中等題型.8、C【分析】首先依次判斷每個幾何體的主視圖,然后即可得到答案.【詳解】解:A、主視圖是矩形,B、主視圖是三角形,C、主視圖為圓,D、主視圖是正方形,故選:C.【點睛】本題考查了簡單幾何體的三視圖,熟知這些簡單幾何體的三視圖是解決此類問題的關鍵.9、C【分析】根據圖形證明△AOE≌△COG,作KM⊥AD,證明四邊形DKMN為正方形,再證明Rt△AEH≌Rt△CGF,Rt△DHG≌Rt△BFE,設正方形邊長為a,CG=MN=x,根據正方形的性質列出平行四邊形的面積的代數式,再化簡整理,即可判斷.【詳解】連接AC,EG,交于O點,∵四邊形是平行四邊形,四邊形是正方形,∴GO=EO,AO=CO,又∠AOE=∠COG∴△AOE≌△COG,∴GC=AE,∵NE∥AD,∴四邊形AEND為矩形,∴AE=DN,∴DN=GC=MN作KM⊥AD,∴四邊形DKMN為正方形,在Rt△AEH和Rt△CGF中,∴Rt△AEH≌Rt△CGF,∴AH=CF,∵AD-AH=BC-CF∴DH=BF,同理Rt△DHG≌Rt△BFE,設CG=MN=x,設正方形邊長為a則S△HDG=DH×x+DG×x=S△FBES△HAE=AH×x=S△GCFS平行四邊形EFGH=a2-2S△HDG-2S△HAE=a2-(DH+DG+AH)×x,∵DG=a-x∴S平行四邊形EFGH=a2-(a+a-x)×x=a2-2ax+x2=(a-x)2故只需要知道a-x就可以求出面積BE=a-x,故選C.【點睛】此題主要考查正方形的性質,解題的關鍵是根據題意設出字母,表示出面積進行求解.10、A【解析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,是中心對稱圖形,故此選項正確;

B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

C、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每小題3分,共24分)11、【分析】設則,根據是平行四邊形,可得,即,和,可得,由于是的中點,可得,因此,,,再通過便可得出.【詳解】解:∵∴設,,則∵是平行四邊形∴,∴,,∴∴又∵是的中點∴∴∴∴∴故答案為:【點睛】本題主要考查了平行四邊形的性質,全等三角形的判定和性質,相似三角形的判定和性質,求證兩個三角形相似,再通過比值等量代換表示出邊的數量關系是解題的關鍵.12、1【分析】先根據正方形的性質可得,從而可得,再根據相似三角形的判定與性質可得,從而可得CF的長,又根據線段的和差可得DF的長,然后根據相似三角形的判定與性質可得,從而可得出DE的長,最后根據直角三角形的面積公式即可得.【詳解】四邊形ABCD是正方形,,即在和中,,即解得又,即,即解得則的面積為故答案為:1.【點睛】本題考查了正方形的性質、相似三角形的判定定理與性質等知識點,熟練掌握相似三角形的判定定理與性質是解題關鍵.13、2或﹣1【分析】分反比例函數y=在第一象限和第四象限兩種情況解答.【詳解】解:當反比例函數y=在第一象限時,﹣x+3=1,解得x=2,即反比例函數y=的圖象與一次函數y=﹣x+3的圖象交于點(2,1),∴k=2×1=2;當反比例函數y=在第四象限時,﹣x+3=﹣1,解得x=1,即反比例函數y=的圖象與一次函數y=﹣x+3的圖象交于點(1,﹣1),∴k=1×(﹣1)=﹣1.∴k=2或﹣1.故答案為:2或﹣1【點睛】本題主要考察反比例函數和一次函數的交點問題,分象限情況作答是解題關鍵.14、x1>2或x1<1.【分析】將二次函數的解析式化為頂點式,然后將點P、Q的坐標代入解析式中,然后y1>y2,列出關于x1的不等式即可求出結論.【詳解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵點P(x1,y1)和Q(2,y2)在二次函數y=(x+k)(x﹣k﹣2)的圖象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<1.故答案為:x1>2或x1<1.【點睛】此題考查的是比較二次函數上兩點之間的坐標大小關系,掌握二次函數的頂點式和根據函數值的取值范圍求自變量的取值范圍是解決此題的關鍵.15、【分析】分別求出“兩球同色”與“兩球異色”的可能性,然后比較大小即可.【詳解】根據盒子中有2個白球,2個黑球可得從中取出2個球,一共有6種可能:2白、2黑、1白1黑(4種)∴“兩球同色”的可能性為“兩球異色”的可能性為∵∴故答案為:.【點睛】本題考查了概率的問題,掌握“兩球同色”與“兩球異色”的可能性是解題的關鍵.16、【分析】根據條件可知a與b的數量關系,然后代入原式即可求出答案.【詳解】∵=,∴b=a,∴=,故答案為:.【點睛】本題考查了分式,解題的關鍵是熟練運用分式的運算法則.17、等【解析】根據二次函數的圖象最高點是坐標原點,可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據二次函數的圖象最高點是坐標原點,可以得到a<0,b=0,c=0,例如:.【點睛】此題是開放性試題,考查函數圖象及性質的綜合運用,對考查學生所學函數的深入理解、掌握程度具有積極的意義.18、1【分析】由得到,由變形得到,再將整體代入,計算即可得到答案.【詳解】由得到,由變形得到,再將整體代入得到1.【點睛】本題考查代數式求值,解題的關鍵是掌握整體代入法.三、解答題(共66分)19、(1)證明見解析;(2)1;(3)證明見解析.【分析】(1)連接OD,由AB是圓O的直徑可得∠ADB=90°,進而求得∠ADO+∠PDA=90°,即可得出直線PD為⊙O的切線;(2)根據BE是⊙O的切線,則∠EBA=90°,即可求得∠P=30°,再由PD為⊙O的切線,得∠PDO=90°,根據三角函數的定義求得OD,由勾股定理得OP,即可得出PA;(3)根據題意可證得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圓O的直徑,得∠ADB=90°,設∠PBD=x°,則可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圓內接四邊形的性質得出x的值,可得出△BDE是等邊三角形.進而證出四邊形DFBE為菱形.【詳解】解:(1)直線PD為⊙O的切線,理由如下:如圖1,連接OD,∵AB是圓O的直徑,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵點D在⊙O上,∴直線PD為⊙O的切線;(2)∵BE是⊙O的切線,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD為⊙O的切線,∴∠PDO=90°,在Rt△PDO中,∠P=30°,PD=,∴,解得OD=1,∴=2,∴PA=PO﹣AO=2﹣1=1;(3)如圖2,依題意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圓O的直徑,∴∠ADB=90°,設∠PBD=x°,則∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四邊形AFBD內接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切線,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等邊三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等邊三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四邊形DFBE為菱形.【點睛】本題是一道綜合性的題目,考查了切線的判定和性質,圓周角定理和菱形的性質,是中檔題,難度較大.20、(1)A(-4,3),C(-2,5),B(3,0);(2)點A′的坐標為:(-4,-3),B′的坐標為:(-3,0),點C′的坐標為:(2,-5);(3)5..【分析】(1)直接利用坐標系得出各點坐標即可;

(2)利用關于坐標軸對稱點的性質分別得出答案;

(3)直接利用勾股定理得出答案.【詳解】(1)A(-4,3),C(-2,5),B(3,0);(2)如圖所示:點A′的坐標為:(-4,-3),B′的坐標為:(-3,0),點C′的坐標為:(2,-5);

(3)線段BC的長為:=5.【點睛】此題主要考查關于坐標軸對稱點的性質,勾股定理,正確得出對應點位置是解題關鍵.21、x1=+1,x2=+1【分析】先把方程進行整理,然后利用配方法進行解方程,即可得到答案.【詳解】解:∵,∴,∴,∴,∴x1=+1,x2=+1.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握配方法進行解一元二次方程.22、(1)證明見解析;(2).【分析】(1)連接OC,先證明OC∥AE,從而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代換即可證得答案;(2)設OC交BD于點G,連接DC,先證明△ACD∽△AEC,從而利用相似三角形的性質解得,再利用=cos∠FDC,代入相關線段的長可求得DF.【詳解】(1)證明:如圖,連接OC∵過點C的切線與AB的延長線垂直于點E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠EAC,即AC平分∠BAD;(2)如圖,設OC交BD于點G,連接DC∵AD為直徑∴∠ACD=90°,∠ABD=90°∵CE⊥AE∴DB∥CE∵OC⊥CE∴OC⊥BD∴DG=BG∵∠OAC=∠EAC,∠ACD=90°=∠E∴△ACD∽△AEC∴∵⊙O的半徑為,AC=6∴AD=7,∴∴易得四邊形BECG為矩形∴DG=BG=∵=cos∠FDC∴解得:∴DF的長為.【點睛】本題考查相似三角形的性質,借助輔助線,判定△ACD∽△AEC,再根據相似三角形的性質求解.23、(1)見解析;(2)四邊形BFCD的面積為1.【分析】(1)由AB=AC可得,然后根據垂徑定理的推論即可證得結論;(2)先根據ASA證得△BED≌△CEF,從而可得CF=BD,于是可推得四邊形BFCD是平行四邊形,進一步即得四邊形BFCD是菱形;易證△AEC∽△CED,設DE=x,根據相似三角形的性質可得關于x的方程,解方程即可求出x的值,再根據菱形面積公式計算即可.【詳解】(1)證明:∵AB=AC,∴,∵AE過圓心O,∴BE=CE;(2)解:∵AB=AC,BE=CE,∴AD⊥BC,∠BAD=∠CAD,∴∠BED=∠CEF=90°,∵CF∥BD,∴∠DBE=∠FCE,∴△BED≌△CEF(ASA),∴CF=BD,∴四邊形BFCD是平行四邊形,∵AD⊥BC,∴平行四邊形BFCD是菱形;∴BD=CD,∴,∴∠CAE=∠ECD,∵∠AEC=∠CED=90°,∴△AEC∽△CED,∴,∴CE2=DE?AE,設DE=x,∵BC=8,AD=10,∴CE=4,AE=10-x,∴42=x(10﹣x),解得:x=2或x=8(舍去),∴DF=2DE=4,∴四邊形BFCD的面積=×4×8=1.【點睛】本題考查了垂徑定理、圓周角定理的推論、等腰三角形的性質、全等三角形的判定和性質、菱形的判定和性質、相似三角形的判定和性質以及一元二次方程的解法等知識,綜合性強,具有一定的難度,熟練掌握上述基礎知識是解題的關鍵.24、(1)詳見解析;(2)詳見解析【分析】(1)連接AD,證明∠BAD=∠CAD即可得出,則結論得出;(2)在AE上截取EG=CF,連接DG,證明△GED≌△CFD,得出DG=CD,∠EGD=∠C,則可得出結論△DBG∽△ABC.【詳解】(1)證明:連接AD,∵AB=AC,BD=DC,∴∠BAD=∠CAD,∴,∴DE=DF.(2)證明:在AE上截取EG=CF,連接DG,∵四邊形AEDF內接于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論