




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆吉林省長春市榆樹市第一高級中學高三年級第二學期第一次聯合測試試卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.2.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.3.設,集合,則()A. B. C. D.4.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.5.已知函數,若時,恒成立,則實數的值為()A. B. C. D.6.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值8.已知橢圓,直線與直線相交于點,且點在橢圓內恒成立,則橢圓的離心率取值范圍為()A. B. C. D.9.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.410.已知函數fx=sinωx+π6+A.16,13 B.111.若,則,,,的大小關系為()A. B.C. D.12.甲、乙、丙、丁四位同學利用暑假游玩某風景名勝大峽谷,四人各自去景區的百里絕壁、千丈瀑布、原始森林、遠古村寨四大景點中的一個,每個景點去一人.已知:①甲不在遠古村寨,也不在百里絕壁;②乙不在原始森林,也不在遠古村寨;③“丙在遠古村寨”是“甲在原始森林”的充分條件;④丁不在百里絕壁,也不在遠古村寨.若以上語句都正確,則游玩千丈瀑布景點的同學是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.已知函數的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則14.雙曲線的焦點坐標是_______________,漸近線方程是_______________.15.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.16.命題“”的否定是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.18.(12分)設復數滿足(為虛數單位),則的模為______.19.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α120.(12分)已知等比數列是遞增數列,且.(1)求數列的通項公式;(2)若,求數列的前項和.21.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數為,,,規定空集中元素的個數為.當時,求的值;利用數學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【題目詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【題目點撥】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題2、C【解題分析】
由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【題目詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【題目點撥】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.3、B【解題分析】
先化簡集合A,再求.【題目詳解】由得:,所以,因此,故答案為B【題目點撥】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.4、A【解題分析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.5、D【解題分析】
通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【題目詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【題目點撥】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.6、C【解題分析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【題目詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.7、D【解題分析】
A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【題目詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【題目點撥】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.8、A【解題分析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據恒在橢圓內列不等式,化簡后求得離心率的取值范圍.【題目詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【題目點撥】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.9、D【解題分析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【題目詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【題目點撥】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.10、A【解題分析】
將fx整理為3sinωx+π3,根據x的范圍可求得ωx+π3∈π【題目詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【題目點撥】本題考查利用正弦型函數的值域求解參數范圍的問題,關鍵是能夠結合正弦型函數的圖象求得角的范圍的上下限,從而得到關于參數的不等式.11、D【解題分析】因為,所以,因為,,所以,.綜上;故選D.12、D【解題分析】
根據演繹推理進行判斷.【題目詳解】由①②④可知甲乙丁都不在遠古村寨,必有丙同學去了遠古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景點的同學是丁.故選:D.【題目點撥】本題考查演繹推理,掌握演繹推理的定義是解題基礎.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數的圖像與性質.14、【解題分析】
通過雙曲線的標準方程,求解,,即可得到所求的結果.【題目詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.【題目點撥】本題主要考查了雙曲線的簡單性質的應用,考查了運算能力,屬于容易題.15、{5}【解題分析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.16、,【解題分析】
根據特稱命題的否定為全稱命題得到結果即可.【題目詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【題目點撥】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解題分析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【題目詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【題目點撥】本題考查了線面垂直的證明與性質,利用定義求線面角,屬于中檔題.18、1【解題分析】
整理已知利用復數的除法運算方式計算,再由求模公式得答案.【題目詳解】因為,即所以的模為1故答案為:1【題目點撥】本題考查復數的除法運算與求模,屬于基礎題.19、A=【解題分析】
運用矩陣定義列出方程組求解矩陣A【題目詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【題目點撥】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結果,較為簡單20、(1)(2)【解題分析】
(1)先利用等比數列的性質,可分別求出的值,從而可求出數列的通項公式;(2)利用錯位相減求和法可求出數列的前項和.【題目詳解】解:(1)由是遞增等比數列,,聯立,解得或,因為數列是遞增數列,所以只有符合題意,則,結合可得,∴數列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【題目點撥】本題考查了等比數列的性質,考查了等比數列的通項公式,考查了利用錯位相減法求數列的前項和.21、;證明見解析.【解題分析】
當時,集合共有個子集,即可求出結果;分類討論,利用數學歸納法證明.【題目詳解】當時,集合共有個子集,所以;①當時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設當時,存在有序集合組滿足題意,且,則當時,集合的子集個數為個,因為是4的整數倍,所以令,,,,且恒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 11553-2:2007 EN Safety of machinery - Laser processing machines - Part 2: Safety requirements for hand-held laser processing devices
- 【正版授權】 IEC TS 63457-1:2025 EN Household and similar appliances – Subsequent safety testing after repair,refurbishment,and remanufacturing – Part 1: General requirements
- 【正版授權】 IEC 60335-2-60:2023 EXV-CMV EN Household and similar electrical appliances - Safety - Part 2-60: Particular requirements for whirlpool baths and whirlpool spas
- 【正版授權】 ISO/IEC GUIDE 51:2014 RU Safety aspects - Guidelines for their inclusion in standards
- 【正版授權】 IEC 60530:1975 FR-D Methods for measuring the performance of electric kettles and jugs for household and similar use
- 學校食堂菜品反饋統計表
- 現代遠程教育技術案例分析題集
- 飲品食品考試試題及答案
- 六一全體唱歌活動方案
- 六一國學活動方案
- 客運安全培訓課件
- 2025年市建設工程質量監督站工作總結(3篇)
- 《ptc鈦酸鋇陶瓷》課件
- 氮氣安全知識培訓課件
- 銀發經濟的發展路徑
- 金礦融資計劃書范文
- JGJ46-2024 建筑與市政工程施工現場臨時用電安全技術標準
- 足球場草坪養護管理手冊
- 國際私法-001-國開機考復習資料
- 《安全事故案例》課件
- 皮瓣移植護理個案
評論
0/150
提交評論