




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023考研數學(一)考試大綱
高等數學
一、函數、極限、連續
考試內容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、
分段函數和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立
數列極限與函數極限的定義及其性質函數的左極限與右極限無窮小量和無窮大量
的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個
準則:單調有界準則和夾逼準則兩個重要極限:
sinx...(.1
vlim------=1lim1+—=e
r—oxx)
函數連續的概念函數間斷點的類型初等函數的連續性閉區間上連續函數的性質
數三,
一、函數、極限、連續
考試內容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分
段函數和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立
數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的
概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:
單調有界準則和夾逼準則兩個重要極限:
sinx(1Y
lim------=1hm1+—=e
x->0xx)
函數連續的概念函數間斷點的類型初等函數的連續性閉區間上連續函數的性質
數一
考試要求
1.理解函數的概念,駕馭函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.駕馭基本初等函數的性質及其圖形,了解初等函數的概念.
5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限
之間的關系.
6.駕馭極限的性質及四則運算法則.
7.駕馭極限存在的兩個準則,并會利用它們求極限,駕馭利用兩個重要極限求極限的
方法.
8.理解無窮小量、無窮大量的概念,駕馭無窮小量的比較方法,會用等價無窮小量求
極限.
9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
10.『解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、
最大值和最小值定理、介值定理),并會應用這些性質.
數三:
一、函數、極限、連續
考試內容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分
段函數
和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立
數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的
概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:
單調有界準則和夾逼準則兩個重要極限:
sinx(1Y
lim------=1hm1+—=e
x->0xx)
函數連續的概念函數間斷點的類型初等函數的連續性閉區間上連續函數的性質
考試要求:
1.理解函數的概念,駕馭函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.駕馭基本初等函數的性質及其圖形,了解初等函數的概念.
5.了解數列極限和函數極限(包括左極限與右極限)的概念.
6.了解極限的性質與極限存在的兩個準則,駕馭極限的四則運算法則,駕馭利用兩個
重要極限求極限的方法.
7.理解無窮小量的概念和基本性質,駕馭無窮小量的比較方法.了解無窮大量的概念
及其與無窮小量的關系.
8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
9.J'解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、
最大值和最小值定理、介值定理),并會應用這些性質.
二、一元函數微分學
考試內容
導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系
平面曲線的切線和法線導數和微分的四則運算基本初等函數的導數復合函數、反函數、
隱函數以及參數方程所確定的函數的微分法高階導數一階微分形式的不變性微分中值
定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、
拐點及漸近線函數圖形的描繪函數的最大值和最小值弧微分曲率的概念曲率圓
與曲率半徑
考試要求
1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲
線的切線方程和法線方程,了解導數的物理意義,會用導數描述一曲物理量,理解函數的可
導性與連續性之間的關系.
2.駕馭導數的四則運算法則和復合函數的求導法則,駕馭基本初等函數的導數公式.r
解微分的四則運算法則和一階微分形式的不變性,會求函數的微分.
3.了解高階導數的概念,會求簡潔函數的高階導數.
4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數.
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,
「解并會用柯西(Cauchy)中值定理.
6.駕馭用洛必達法則求未定式極限的方法.
7.理解函數的極值概念,駕馭用導數推斷函數的單調性和求函數極值的方法,駕馭函
數最大值和最小值的求法及其應用.
8.會用導數推斷函數圖形的凹凸性(注:在區間(〃/)內,設函數/(%)具有二階導數。
當/〃(幻>0時,/3)的圖形是凹的:當/〃。)<0時,/3)的圖形是凸的),會求函數圖
形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形.
9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數積分學
考試內容
原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基
本性質定積分中值定理積分上限的函數及其導數牛頓―萊布尼茨(Newton-Leibniz)
公式不定積分和定積分的換元積分法與分部積分法有理函數、三角函數的有理式和簡潔
無理函數的積分反常(廣義)積分定積分的應用
考試要求
1.理解原函數的概念,理解不定積分和定積分的概念.
2.駕馭不定積分的基本公式,駕馭不定積分和定積分的性質及定積分中值定理,駕馭批注[si]:變了解
換元積分法與分部積分法.
3.會求有理函數、三角函數有理式和簡潔無理函數的積分.
批注[s2]:去掉
4.理解積分上限的函數,會求它的導數,駕馭牛頓-萊布尼茨公式.
5./解反常積分的概念,會計算反常積分.
6.駕馭用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、批注[s3]:去掉
旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)
批注[s4|:去掉
及函數的平均值.
四、向量代數和空間解析幾何批注[s5]:去掉
考試內容
向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、
平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向余弦
曲面方程和空間曲線方程的概念平面方程、直線方程平面與平面、平面與直線、直線與
直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面
常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的
投影曲線方程
考試要求
I.理解空間直角坐標系,理解向量的概念及其表示.
2.駕馭向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行
的條件.
3.理解單位向量、方向數與方向余弦、向量的坐標表達式,駕馭用坐標表達式進行向量
運算的方法.
4.駕馭平面方程和直線方程及其求法.
5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相
互關系(平行、垂直、相交等)解決有關問題.
6.會求點到直線以及點到平面的距離.
7.『解曲面方程和空間曲線方程的概念.
8.了解常用二次曲面的方程及其圖形,會求簡潔的柱面和旋轉曲面的方程.
9.了解空間曲線的參數方程和一般方程.了解空間曲線在坐標平面上的投影,并會求該
投影曲線的方程.
五、多元函數微分學
考試內容
多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上
多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件多
元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面
曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數
的最大值、最小值及其簡潔應用
考試要求
1.理解多元函數的概念,理解二元函數的幾何意義.批注[s6]:了解
2.了解二元函數的極限與連續的概念以及有界閉區域上連續函數的性質.
批注[s刀:了解
3.理解多元函數偏導數和全微分的概念,會求全微分,了解全微分存在的必要條件和
充分條件,了解全微分形式的不變性.
4.理解方向導數與梯度的概念,并駕馭其計算方法.批注[批]:去掉
5.駕馭多元復合函數一階、二階偏導數的求法.
批注網:了解
6.了解隱函數存在定理,會求多元隱函數的偏導數.
7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.
8.了解二元函數的二階泰勒公式.
9.理解多元函數極值和條件極值的概念,駕馭多元函數極值存在的必要條件,了解二
元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求
簡潔多元函數的最大值和最小值,并會解決一些簡潔的應用問題.
六、多元函數積分學
考試內容
二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩
類曲線積分的關系格林(Groen)公式平面曲線積分與路徑無關的條件二元函數全微
分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公
式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用
考試要求
1.理解二重積分、三重積分的概念,了解重積分的性質,了解二重積分的中值定理.
2.駕馭二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面
坐標、球面坐標).
3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系.
4.駕馭計算兩類曲線積分的方法.
5.駕馭格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數全微分的原
函數.
6.了解兩類曲面積分的概念、性質及兩類曲面積分的關系,駕馭計算兩類曲面積分的
方法,駕馭用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分.
7.了解散度與旋度的概念,并會計算.
8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、
曲面面積、弧長、質量、質心、、形心、轉動慣量、引力、功及流量等).
七、無窮級數
考試內容
常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必
要條件幾何級數與〃級數及其收斂性正項級數收斂性的判別法交織級數與萊布尼茨
定理隨意項級數的肯定收斂與條件收斂函數項級數的收斂域與和函數的概念辱級數批注[sl0|:去掉
及其收斂半徑、收斂區間(指開區間)和收斂域轅級數的和函數塞級數在其收斂區間內
的基本性質簡潔基級數的和函數的求法初等函數的幕級數綻開式函數的傅里葉
(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數
函數在[0,/]上的正弦級數和余弦級數批注|sll|:去掉
考試要求
1.理解常數項級數收斂、發散以及收斂級數的和的概念,駕馭級數的基本性質及收斂;批注[S12]:了解
的必要條件.
2.駕馭幾何級數與夕級數的收斂與發散的條件.
3.駕馭正項級數收斂性的比較判別法和比值判別法,會用根值判別法.批注[S13J:去掉
4.國馭交織級數的萊布尼茨判別法.
批注[S14]:了解
5.了解隨意項級數肯定收斂與條件收斂的概念以及肯定收斂與收斂的關系.
6.了解函數項級數的收斂域及和函數的概念.批注[S15R14]:
7.理解基級數收斂半徑的概念、并駕馭幕級數的收斂半徑、收斂區間及收斂域的求法.批注[S16]:去掉
8.了解幕級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),
會求一些幕級數在收斂區間內的和函數,并會由此求出某些數項級數的和.批注[S171:簡潔
9.了解函數綻開為泰勒級數的充分必要條件.
批注[S18]:去掉
10.駕馭/、sinx、cos%、ln(l+x)及(1+x)。的麥克勞林(Maclaurin)綻開式,
批注[S19J:去掉
會用它們將一些簡潔函數間接綻開成塞級數.批注[s20]:了解
11.了解傅里葉級數的概念和狄利克雷收斂定理,會將定義在上的函數綻開為傅
里葉級數,會將定義在[0,/]上的函數綻開為正弦級數與余弦級數,會寫出傅里葉級數的和
函數的表達式.批注[s21]:去掠
八、常微分方程
考試內容
常微分方程的基本概念變量可分別的微分方程齊次微分方程一階線性微分方程
伯努利(Bernoulli)方程全微分方程可用簡潔的變量代換求解的某些微分方程可降
階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方批注[S221:去掉
程高于二階的某些常系數齊次線性微分方程簡潔的二階常系數非齊次線性微分方程歐
批注[s23]:去掉
拉(Eulor)方程微分方程的簡潔應用
考試要求批注[s24]:去掉
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.駕馭變量可分別的微分方程及一階線性微分方程的解法.
3.會解齊次微分方程、伯努利方程和全微分方程,會用簡潔的變量代換解某些微分方
程.批注[S25J:去掉
4.會用降階法解下列形式的微分方程:丁⑺=/(%),/=以x,),')和y"=/(y,/).
5.理解線性微分方程解的性質及解的結構.
6.駕馭二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性
微分方程.
7.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常
系數非齊次線性微分方程.
8.會解歐拉方程.
9.會用微分方程解決一些簡潔的應用問題.
線性代數
一、行列式
考試內容
行列式的概念和基本性質行列式按行(列)綻開定理
考試要求:
1.了解行列式的概念,駕馭行列式的性質.
2.會應用行列式的性質和行列式按行(列)綻開定理計算行列式.
二、矩陣
考試內容
矩陣的概念矩陣的線性運算矩陣的乘法方陣的鼎方陣乘積的行列式矩陣的
轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初
等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣和反
對稱矩陣,以及它們的性質.
2.駕馭矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的寢與方陣乘積
的行列式的性質.
3.理解逆矩陣的概念,駕馭逆矩陣的性質,以及矩陣可逆的充分必要條件,理解伴隨
矩陣的概念,會用伴隨矩陣求逆矩陣.
4.理解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩
的概念,駕馭用初等變換求矩陣的秩和逆矩陣的方法.
5.了解分塊矩陣及其運算.
三、向量
考試內容
向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大
線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相
關概念〃維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交
規范化方法規范正交基正交矩陣及其性質
考試要求
1.理解〃維向量、向量的線性組合與線性表示的概念.
2.理解向量組線性相關、線性無關的概念,駕馭向量組線性相關、線性無關的有關性
質及判別法.
3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組
及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.
5.了解〃維向量空間、子空間、基底、維數、坐標等概念.
6.r解基變換和坐標變換公式,會求過渡矩陣.
7.了解內積的概念,駕馭線性無關向量組正交規范化的施密特(Schmidt)方法.
8.了解規范正交基、正交矩陣的概念以及它們的性質.
四、線性方程組
考試內容
線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次
線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎
解系和通解解空間非齊次線性方程組的通解
考試要求
1.會用克拉默法則.
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要
條件.
3.理解齊次線性方程組的基礎解系、通解及解空間的概念,駕馭齊次線性方程組的基
礎解系和通解的求法.
4.理解非齊次線性方程組解的結構及通解的概念.
5.駕馭用初等行變換求解線性方程組的方法.
五、矩陣的特征值和特征向量
考試內容
矩陣的特征值和特征向量的概念、性質相像變換、相像矩陣的概念及性質矩陣可相像
對角化的充分必要條件及相像對角矩陣實對稱矩陣的特征值、特征向量及其相像對角矩陣
考試要求
1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量.
2.理解相像矩陣的概念、性質及矩陣可相像對角化的充分必要條件,駕馭將矩陣化為
相像對角矩陣的方法.
3.駕馭實對稱矩陣的特征值和特征向量的性質.
六、二次型
考試內容
二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和
規范形用正交變換和配方法化二次型為標準形二次型及其矩陣的正定性
考試要求
1.駕馭二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,
了解二次型的標準形、規范形的概念以及慣性定理.
2.駕馭用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形.
3.理解正定二次型、正定矩陣的概念,并駕馭其判別法.
概率論與數理統計
一、隨機事務和概率
考試內容
隨機事務與樣本空間事務的關系與運算完備事務組概率的概念概率的基本性質古
典型概率幾何型概率條件概率概率的基本公式事務的獨立性獨立重復試驗
考試要求
1.了解樣本空間(基本領件空間)的概念,理解隨機事務的概念,駕馭事務的關系及運
算.
2.理解概率、條件概率的概念,駕馭概率的基本性質,會計算古典型概率和幾何型概
率,駕馭概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯(Bayes)公式.
3.理解事務獨立性的概念,駕馭用事務獨立性進行概率計算:理解獨立重復試驗的概
念,駕馭計算有關事務概率的方法.
二、隨機變量及其分布
考試內容
隨機變量隨機變量分布函數的概念及其性質離散型隨機變量的概率分布連續型隨機
變量的概率密度常見隨機變量的分布隨機變量函數的分布
考試要求
1.理解隨機變量的概念,理解分布函數
F(x)=P(X<x)(^o<x<oo)
的概念及性質,會計算與隨機變量相聯系的事務的概率.
2.理解離散型隨機變量及其概率分布的概念,駕馭0—1分布、二項分布B(〃,p)、幾
何分布、超幾何分布、泊松(Poisson)分布尸(%)及其應用.
3.了解泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.
4.理解連續型隨機變量及其概率密度的概念,駕馭勻稱分布um,力)、正態分布
NWd)、指數分布及其應用,其中參數為義(2>0)的指數分布E(2)的概率密度為
,(Ae-Ax若x>0
fM=<
[0若%<0
5.會求隨機變量函數的分布.
三、多維隨機變量及其分布
考試內容
多維隨機變量及其分布二維離散型隨機變量的概率分布、邊緣分布和條件分布二維
連續型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不相關性常
用二維隨機變量的分布兩個及兩個以上隨機變量簡潔函數的分布
考試要求
1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質.理解二維離散
型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續型隨機變量的概率密度、邊緣
密度和條件密度,會求與二維隨機變量相關事務的概率.
2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人壓裂車隊管理制度
- 嚴格執行合同管理制度
- 企業職稱評審管理制度
- 中介車輛信息管理制度
- 企業專利獎罰管理制度
- 企業飯堂包間管理制度
- 倉庫物品歸還管理制度
- 食品生產半成品管理制度
- 臨床診療中心管理制度
- 企業單車考核管理制度
- 民法典案例解讀PPT
- 安全生產知識應知應會
- 質 量 管 理 體 系 認 證審核報告(模板)
- 腫瘤科新護士入科培訓和護理常規
- 體育器材采購設備清單
- 第4章 頜位(雙語)
- 二手車鑒定評估報告書最終
- 電影場記表(雙機位)
- 塔吊負荷試驗方案
- 電子商務專業“產教融合、五雙并行”人才培養 模式的實踐研究課題論文開題結題中期研究報告(經驗交流)
- 購買社區基本公共養老、青少年活動服務實施方案
評論
0/150
提交評論