




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南昌市心遠中學2024學年畢業升學考試模擬卷數學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.吉林市面積約為27100平方公里,將27100這個數用科學記數法表示為()A.27.1×102B.2.71×103C.2.71×104D.0.271×1052.若x,y的值均擴大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.3.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對4.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數最多為()A.7 B.8 C.9 D.105.第四屆濟南國際旅游節期間,全市共接待游客686000人次.將686000用科學記數法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1056.下列計算正確的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b27.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.8.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+319.下列函數是二次函數的是()A. B. C. D.10.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.72二、填空題(共7小題,每小題3分,滿分21分)11.在直角坐標系平面內,拋物線y=3x2+2x在對稱軸的左側部分是_____的(填“上升”或“下降”)12.對于任意不相等的兩個實數,定義運算※如下:※=,如3※2==.那么8※4=.13.如圖,點D為矩形OABC的AB邊的中點,反比例函數的圖象經過點D,交BC邊于點E.若△BDE的面積為1,則k=________14.今年,某縣境內跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.15.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.16.有一組數據:2,3,5,5,x,它們的平均數是10,則這組數據的眾數是.17.太陽半徑約為696000千米,數字696000用科學記數法表示為千米.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知一次函數y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數y=ax1+bx+c的圖象交于y軸上一點B,該二次函數的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數y=ax1+bx+c的解析式;(3)設一次函數y=x+m的圖象與二次函數y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.19.(5分)已知關于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實數m,判斷方程①的根的情況,并說明理由.20.(8分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.21.(10分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.(1)求A,B兩點間的距離(結果精確到0.1km).(2)當運載火箭繼續直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結果精確到0.1km).(參考數據:sin34°=0.56,cos34°=0.83,tan34°=0.1.)22.(10分)為了計算湖中小島上涼亭P到岸邊公路l的距離,某數學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結果保留整數,參考數據:≈1.414,≈1.732)23.(12分)由于持續高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間(天)的關系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬m3)與時間(天)的函數關系式,并求當x=20時的水庫總蓄水量.(2)求當0≤x≤60時,水庫的總蓄水量y萬(萬m3)與時間x(天)的函數關系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴重干旱,直接寫出發生嚴重干旱時x的范圍.24.(14分)為了增強居民節水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.若用戶的月用水量不超過15噸,每噸收水費4元;用戶的月用水量超過15噸,超過15噸的部分,按每噸6元收費.(I)根據題意,填寫下表:月用水量(噸/戶)41016……應收水費(元/戶)40……(II)設一戶居民的月用水量為x噸,應收水費y元,寫出y關于x的函數關系式;(III)已知用戶甲上個月比用戶乙多用水6噸,兩戶共收水費126元,求他們上個月分別用水多少噸?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】將27100用科學記數法表示為:.2.71×104.故選:C.【題目點撥】本題考查科學記數法—表示較大的數。2、D【解題分析】
根據分式的基本性質,x,y的值均擴大為原來的3倍,求出每個式子的結果,看結果等于原式的即是答案.【題目詳解】根據分式的基本性質,可知若x,y的值均擴大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【題目點撥】本題考查的是分式的基本性質,即分子分母同乘以一個不為0的數,分式的值不變.此題比較簡單,但計算時一定要細心.3、D【解題分析】
從圖中可以看出,線段AB掃過的圖形面積為一個環形,環形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【題目詳解】陰影面積=π.
故選D.【題目點撥】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環形.4、C【解題分析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【題目詳解】根據三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數最多為9個,故選C.【題目點撥】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現了對空間想象能力的考查.5、D【解題分析】根據科學記數法的表示形式(a×10n,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數)可得:686000=6.86×105,
故選:D.6、B【解題分析】分析:根據合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關鍵.7、A【解題分析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.8、C【解題分析】
本題考查探究、歸納的數學思想方法.題中明確指出:任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.由于“正方形數”為兩個“三角形數”之和,正方形數可以用代數式表示為:(n+1)2,兩個三角形數分別表示為n(n+1)和(n+1)(n+2),所以由正方形數可以推得n的值,然后求得三角形數的值.【題目詳解】∵A中13不是“正方形數”;選項B、D中等式右側并不是兩個相鄰“三角形數”之和.故選:C.【題目點撥】此題是一道找規律的題目,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.9、C【解題分析】
根據一次函數的定義,二次函數的定義對各選項分析判斷利用排除法求解.【題目詳解】A.y=x是一次函數,故本選項錯誤;B.y=是反比例函數,故本選項錯誤;C.y=x-2+x2是二次函數,故本選項正確;D.y=右邊不是整式,不是二次函數,故本選項錯誤.故答案選C.【題目點撥】本題考查的知識點是二次函數的定義,解題的關鍵是熟練的掌握二次函數的定義.10、B【解題分析】
根據題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【題目詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【題目點撥】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、下降【解題分析】
根據拋物線y=3x2+2x圖像性質可得,在對稱軸的左側部分是下降的.【題目詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【題目點撥】本題考查二次函數的圖像及性質.根據拋物線開口方向和對稱軸的位置即可得出結論.12、【解題分析】
根據新定義的運算法則進行計算即可得.【題目詳解】∵※=,∴8※4=,故答案為.13、1【解題分析】分析:設D(a,),利用點D為矩形OABC的AB邊的中點得到B(2a,),則E(2a,),然后利用三角形面積公式得到?a?(-)=1,最后解方程即可.詳解:設D(a,),
∵點D為矩形OABC的AB邊的中點,
∴B(2a,),
∴E(2a,),
∵△BDE的面積為1,
∴?a?(-)=1,解得k=1.
故答案為1.點睛:本題考查了反比例函數解析式的應用,根據解析式設出點的坐標,結合矩形的性質并利用平面直角坐標系中點的特征確定三角形的兩邊長,進而結合三角形的面積公式列出方程求解,可確定參數k的取值.14、m【解題分析】
由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關系即可得出結論.【題目詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【題目點撥】解直角三角形的應用-仰角俯角問題.15、7【解題分析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.16、1【解題分析】根據平均數為10求出x的值,再由眾數的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數據中1出現的次數最多,則這組數據的眾數為1.故答案為1.17、.【解題分析】試題分析:696000=6.96×1,故答案為6.96×1.考點:科學記數法—表示較大的數.三、解答題(共7小題,滿分69分)18、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解題分析】
(1)根據y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(1)二次函數y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1.得出可設二次函數y=ax1+bx+c=a(x﹣1)1,進而求出即可;(3)根據當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.【題目詳解】(1)∵y=x+1交x軸于點A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點B,∵x=0,∴y=1∴B點坐標為:(0,1),(1)∵二次函數y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1∴可設二次函數y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函數的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)當B為直角頂點時,過B作BP1⊥AD交x軸于P1點由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,連接BP1,將y=0.5x+1與y=0.5x1﹣1x+1聯立求出兩函數交點坐標:D點坐標為:(5,4.5),則AD=,當D為直角頂點時∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,則OP1=11.15﹣4=7.15,故P1點坐標為(7.15,0);∴點P的坐標為:P1(1,0)和P1(7.15,0).【題目點撥】此題主要考查了二次函數綜合應用以及求函數與坐標軸交點和相似三角形的與性質等知識,根據已知進行分類討論得出所有結果,注意不要漏解.19、(1)方程的另一根為x=2;(2)方程總有兩個不等的實數根,理由見解析.【解題分析】試題分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一個根;(2)利用一元二次方程根的情況可以轉化為判別式△與1的關系進行判斷.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有兩個不相等的實數根.考點:本題考查的是根的判別式,一元二次方程的解的定義,解一元二次方程點評:解答本題的關鍵是熟練掌握一元二次方程根的情況與判別式△的關系:當△>1,方程有兩個不相等的實數根;當△=1,方程有兩個相等的實數根;當△<1,方程沒有實數根20、證明見解析.【解題分析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據全等三角形的性質即可證明AC=EF.(2)根據(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【題目詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四邊形ADFE是平行四邊形.考點:1.全等三角形的判定與性質;2.等邊三角形的性質;3.平行四邊形的判定.21、(1)1.7km;(2)8.9km;【解題分析】
(1)根據銳角三角函數可以表示出OA和OB的長,從而可以求得AB的長;(2)根據銳角三角函數可以表示出CD,從而可以求得此時雷達站C和運載火箭D兩點間的距離.【題目詳解】解:(1)由題意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,∴AO=OC?tan34°,BO=OC?tan45°,∴AB=OB﹣OA=OC?tan45°﹣OC?tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,即A,B兩點間的距離是1.7km;(2)由已知可得,∠DOC=90°,OC=5km,∠DCO=56°,∴cos∠DCO=即∵sin34°=cos56°,∴解得,CD≈8.9答:此時雷達站C和運載火箭D兩點間的距離是8.9km.【題目點撥】本題考查解直角三角形的應用﹣仰角俯角問題,解答本題的關鍵是明確題意,利用數形結合的思想和銳角三角函數解答.22、涼亭P到公路l的距離為273.2m.【解題分析】
分析:作PD⊥AB于D,構造出Rt△APD與Rt△BPD,根據AB的長度.利用特殊角的三角函數值求解.【題目詳解】詳解:作PD⊥AB于D.設BD=x,則AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°?AD,即DB=PD=tan30°?AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:涼亭P到公路l的距離為273.2m.【題目點撥】此題考查的是直角三角形的性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論