




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省2024屆中考數學猜題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等2.共享單車已經成為城市公共交通的重要組成部分,某共享單車公司經過調查獲得關于共享單車租用行駛時間的數據,并由此制定了新的收費標準:每次租用單車行駛a小時及以內,免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統計量是此次調查所得數據的()A.平均數 B.中位數 C.眾數 D.方差3.計算3×(﹣5)的結果等于()A.﹣15B.﹣8C.8D.154.設x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.165.如圖所示,數軸上兩點A,B分別表示實數a,b,則下列四個數中最大的一個數是(
)A.a
B.b
C. D.6.如圖,平行于x軸的直線與函數,的圖象分別相交于A,B兩點,點A在點B的右側,C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.7.二次函數的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數根8.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續摸出一球.以下是利用計算機模擬的摸球試驗次數與摸出黑球次數的列表:摸球試驗次數100100050001000050000100000摸出黑球次數46487250650082499650007根據列表,可以估計出m的值是()A.5 B.10 C.15 D.209.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形10.據悉,超級磁力風力發電機可以大幅度提升風力發電效率,但其造價高昂,每座磁力風力發電機,其建造花費估計要5300萬美元,“5300萬”用科學記數法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108二、填空題(共7小題,每小題3分,滿分21分)11.飛機著陸后滑行的距離y(單位:m)關于滑行時間t(單位:s)的函數解析式是y=60t﹣.在飛機著陸滑行中,最后4s滑行的距離是_____m.12.已知二次函數y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).13.如圖,一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.14.數據5,6,7,4,3的方差是.15.如果分式的值是0,那么x的值是______.16.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.17.填在下列各圖形中的三個數之間都有相同的規律,根據此規律,a的值是____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.(1)求證:B是EC的中點;(2)分別延長CD、EA相交于點F,若AC2=DC?EC,求證:AD:AF=AC:FC.19.(5分)如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數式表示);(2)若以AD為直徑的圓經過點C.①求拋物線的函數關系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.20.(8分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結果保留小數點后一位).參考數據sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.21.(10分)一次函數y=34x的圖象如圖所示,它與二次函數y=ax2(1)求點C的坐標;(2)設二次函數圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數的關系式.22.(10分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.23.(12分)如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點F,∠ABC的平分線交AD于點E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長24.(14分)為響應國家“厲行節約,反對浪費”的號召,某班一課外活動小組成員在全校范圍內隨機抽取了若干名學生,針對“你每天是否會節約糧食”這個問題進行了調查,并將調查結果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統計圖(如圖)(1)這次被抽查的學生共有______人,扇形統計圖中,“A組”所對應的圓心度數為______;(2)補全兩個統計圖;(3)如果該校學生共有2000人,請估計“每天都會節約糧食”的學生人數;(4)若不節約零食造成的浪費,按平均每人每天浪費5角錢計算,小江認為,該校學生一年(365天)共將浪費:2000×20%×0.5×365=73000(元),你認為這種說法正確嗎?并說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據此進行解答即可.【題目詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【題目點撥】本題考查了平行四邊形的定義以及性質,知道對角線平分平行四邊形是解題關鍵.2、B【解題分析】
根據需要保證不少于50%的騎行是免費的,可得此次調查的參考統計量是此次調查所得數據的中位數.【題目詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統計量是此次調查所得數據的中位數,故選B.【題目點撥】本題考查了中位數的知識,中位數是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數列的極大或極小值影響,從而在一定程度上提高了中位數對分布數列的代表性。3、A【解題分析】
按照有理數的運算規則計算即可.【題目詳解】原式=-3×5=-15,故選擇A.【題目點撥】本題考查了有理數的運算,注意符號不要搞錯.4、C【解題分析】
根據根與系數的關系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【題目詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,
∴x1+x2=2,x1?x2=-5,
∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.
故選C.【題目點撥】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.5、D【解題分析】
∵負數小于正數,在(0,1)上的實數的倒數比實數本身大.∴<a<b<,故選D.6、A【解題分析】【分析】設,,根據反比例函數圖象上點的坐標特征得出,根據三角形的面積公式得到,即可求出.【題目詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【題目點撥】本題考查了反比例函數圖象上點的坐標特征,三角形的面積,熟知點在函數的圖象上,則點的坐標滿足函數的解析式是解題的關鍵.7、C【解題分析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數根,據此對各選項進行判斷即可.【題目詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數根,故D選項錯誤,故選C.【題目點撥】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.8、B【解題分析】
由概率公式可知摸出黑球的概率為5m,分析表格數據可知摸出黑球次數【題目詳解】解:分析表格數據可知摸出黑球次數摸球實驗次數的值總是在0.5左右,則由題意可得5故選擇B.【題目點撥】本題考查了概率公式的應用.9、C【解題分析】
任何多邊形的外角和是360°,用360°除以一個外角度數即可求得多邊形的邊數.【題目詳解】360°÷72°=1,則多邊形的邊數是1.故選C.【題目點撥】本題主要考查了多邊形的外角和定理,已知外角求邊數的這種方法是需要熟記的內容.10、C【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】解:5300萬=53000000=.故選C.【題目點撥】在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).二、填空題(共7小題,每小題3分,滿分21分)11、24【解題分析】
先利用二次函數的性質求出飛機滑行20s停止,此時滑行距離為600m,然后再將t=20-4=16代入求得16s時滑行的距離,即可求出最后4s滑行的距離.【題目詳解】y=60t﹣=(t-20)2+600,即飛機著陸后滑行20s時停止,滑行距離為600m,當t=20-4=16時,y=576,600-576=24,即最后4s滑行的距離是24m,故答案為24.【題目點撥】本題考查二次函數的應用,解題的關鍵是理解題意,熟練應用二次函數的性質解決問題.12、增大.【解題分析】
根據二次函數的增減性可求得答案【題目詳解】∵二次函數y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【題目點撥】本題考查的知識點是二次函數的性質,解題的關鍵是熟練的掌握二次函數的性質.13、1【解題分析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據題意設出點A的坐標,然后根據一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【題目詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設點A的坐標為(1a,a),∵一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【題目點撥】本題考查了正切,反比例函數與一次函數的交點問題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.14、1【解題分析】
先求平均數,再根據方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]計算即可.【題目詳解】解:∵=(5+6+7+4+3)÷5=5,∴數據的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.故答案為:1.考點:方差.15、1.【解題分析】
根據分式為1的條件得到方程,解方程得到答案.【題目詳解】由題意得,x=1,故答案是:1.【題目點撥】本題考查分式的值為零的條件,分式為1需同時具備兩個條件:(1)分子為1;(2)分母不為1.這兩個條件缺一不可.16、【解題分析】
解:設E(x,x),∴B(2,x+2),∵反比例函數(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為17、1.【解題分析】尋找規律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數字減上面數字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)詳見解析.【解題分析】
(1)根據平行線的性質結合角平分線的性質可得出∠BCA=∠BAC,進而可得出BA=BC,根據等角的余角相等結合等角對等邊,即可得出AB=BE,進而可得出BE=BA=BC,此題得證;(2)根據AC2=DC?EC結合∠ACD=∠ECA可得出△ACD∽△ECA,根據相似三角形的性質可得出∠ADC=∠EAC=90°,進而可得出∠FDA=∠FAC=90°,結合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質可證出AD:AF=AC:FC.【題目詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點;(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【題目點撥】本題考查了相似三角形的判定與性質、角平分線的性質以及等腰三角形的性質,解題的關鍵是:(1)利用等角對等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.19、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解題分析】分析:(1)將二次函數的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經過點C,即點C在以AD為直徑的圓的圓周上,依據圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據勾股定理列等式即可求出a的值.②將△OBE繞平面內某一點旋轉180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據①的函數解析式設出M點的坐標,然后根據題干條件:BF=2MF作為等量關系進行解答即可.③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內某一點旋轉180°得到△PMN,∴PM∥x軸,且PM=OB=1;設M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數解析式的確定、旋轉圖形的性質、圓周角定理以及直線和圓的位置關系等重要知識點;后兩個小題較難,最后一題中,通過構建等腰直角三角形找出QD和⊙Q半徑間的數量關系是解題題目的關鍵.20、建筑物AB的高度約為30.3m.【解題分析】分析:過點D作DE⊥AB,利用解直角三角形的計算解答即可.詳解:如圖,根據題意,BC=2,∠DCB=90°,∠ABC=90°.過點D作DE⊥AB,垂足為E,則∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四邊形DCBE為矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE?tan30°=.在Rt△DEB中,tan∠BDE=,∴BE=DE?tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度約為30.3m.點睛:考查解直角三角形的應用﹣仰角俯角問題,要求學生能借助俯角構造直角三角形并解直角三角形.21、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解題分析】試題分析:(1)求得二次函數y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據勾股定理用m表示出AC的長,根據△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數與一次函數的綜合題.22、(1)見解析;(2)AC∥BD,理由見解析;(3)【解題分析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;
(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;
(3)首先利用相似三角形的性質表示出BD,PM的長,進而根據三角形的面積公式得到△PBD的面積.【題目詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉村旅館衛生管理制度
- 義齒行業規章管理制度
- 傳媒公司流程管理制度
- 中鐵一局公司管理制度
- 京東自營評價管理制度
- 人員定位軌跡管理制度
- 中式快餐加盟管理制度
- 食品公司包裝間管理制度
- 項目erp公司管理制度
- 中通公司司機管理制度
- 產品方案技術白皮書模板(含系統架構說明書)
- 能源動力類能源與動力工程專業
- 橡膠與人類-青島科技大學中國大學mooc課后章節答案期末考試題庫2023年
- 福建省漳州實小教育集團2023屆數學三下期末檢測模擬試題含解析
- 有效溝通-報聯商課件
- 航行通告教學課件
- 星巴克勞動合同
- 《電子技術基礎》期末考試復習(重點)題庫(含答案)
- 結締組織病的肺部表現
- 景觀工程施工圖設計總說明
- CASIO電子計算器fx-82ES-PLUS-A說明書
評論
0/150
提交評論