




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省錦州市重點中學2024屆中考數學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.四個有理數﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣32.股市有風險,投資需謹慎.截至今年五月底,我國股市開戶總數約95000000,正向1億挺進,95000000用科學計數法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1093.下列各數中是無理數的是()A.cos60° B. C.半徑為1cm的圓周長 D.4.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.5.已知二次函數y=(x+m)2–n的圖象如圖所示,則一次函數y=mx+n與反比例函數y=的圖象可能是()A. B. C. D.6.已知一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.27.有一種球狀細菌的直徑用科學記數法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米8.在1、﹣1、3、﹣2這四個數中,最大的數是()A.1 B.﹣1 C.3 D.﹣29.在函數y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠110.某班為獎勵在學校運動會上取得好成績的同學,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.下面是“作已知圓的內接正方形”的尺規作圖過程.已知:⊙O.求作:⊙O的內接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點A,點B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點,順次連接A、C、B、D.即四邊形ACBD為所求作的圓內接正方形.請回答:該尺規作圖的依據是_____.12.因式分解:2b2a2﹣a3b﹣ab3=_____.13.已知整數k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.14.因式分解:.15.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.16.已知拋物線y=,那么拋物線在y軸右側部分是_________(填“上升的”或“下降的”).17.要使式子有意義,則的取值范圍是__________.三、解答題(共7小題,滿分69分)18.(10分)已知平行四邊形.尺規作圖:作的平分線交直線于點,交延長線于點(要求:尺規作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.19.(5分)2018年大唐芙蓉園新春燈會以“鼓舞中華”為主題,既有新年韻味,又結合“一帶一路”展示了絲綢之路上古今文化經貿繁榮的盛況。小麗的爸爸買了兩張門票,她和各個兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個不透明的筷簍里搖勻,小麗隨機從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機取出一根筷子是紅色的概率;(2)請用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會的概率。20.(8分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.21.(10分)如下表所示,有A、B兩組數:第1個數第2個數第3個數第4個數……第9個數……第n個數A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個數是;用含n的代數式表示B組第n個數是,并簡述理由;在這兩組數中,是否存在同一列上的兩個數相等,請說明.22.(10分)未成年人思想道德建設越來越受到社會的關注,遼陽青少年研究所隨機調查了本市一中學100名學生寒假中花零花錢的數量(錢數取整數元),以便引導學生樹立正確的消費觀.根據調查數據制成了頻分組頻數頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調查的樣本容量是;(3)研究所認為,應對消費150元以上的學生提出勤儉節約的建議.試估計應對該校1000名學生中約多少名學生提出這項建議.23.(12分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態園林城市”在2018年植樹節到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數量不少于乙種樹的數量的,請設計出最省錢的購買方案,并說明理由.24.(14分)P是⊙O內一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關于⊙O的“冪值”是否為定值,若是定值,證明你的結論;若不是定值,求點P關于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】解:∵-1<-1<0<2,∴最小的是-1.故選D.2、B【解題分析】試題分析:15000000=1.5×2.故選B.考點:科學記數法—表示較大的數3、C【解題分析】分析:根據“無理數”的定義進行判斷即可.詳解:A選項中,因為,所以A選項中的數是有理數,不能選A;B選項中,因為是無限循環小數,屬于有理數,所以不能選B;C選項中,因為半徑為1cm的圓的周長是cm,是個無理數,所以可以選C;D選項中,因為,2是有理數,所以不能選D.故選.C.點睛:正確理解無理數的定義:“無限不循環小數叫做無理數”是解答本題的關鍵.4、C【解題分析】
由平面圖形的折疊及正方形的展開圖結合本題選項,一一求證解題.【題目詳解】解:A、B、D都是正方體的展開圖,故選項錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【題目點撥】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題5、C【解題分析】試題解析:觀察二次函數圖象可知:∴一次函數y=mx+n的圖象經過第一、二、四象限,反比例函數的圖象在第二、四象限.故選D.6、C【解題分析】
根據題意得出旋轉后的函數解析式為y=-x-1,然后根據解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【題目詳解】∵一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),∴設旋轉后的函數解析式為y=﹣x﹣1,在一次函數y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數y=﹣x+2與x軸交點為(4,1).一次函數y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【題目點撥】本題考查了一次函數圖象與幾何變換,解題的關鍵是求出旋轉后的函數解析式.本題屬于基礎題,難度不大.7、B【解題分析】
絕對值小于1的負數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【題目詳解】2.16×10﹣3米=0.00216米.故選B.【題目點撥】考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.8、C【解題分析】
有理數大小比較的法則:①正數都大于0;②負數都小于0;③正數大于一切負數;④兩個負數,絕對值大的其值反而小,據此判斷即可.【題目詳解】解:根據有理數比較大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2這四個數中,最大的數是1.故選C.【題目點撥】此題主要考查了有理數大小比較的方法,要熟練掌握,解答此題的關鍵是要明確:①正數都大于0;②負數都小于0;③正數大于一切負數;④兩個負數,絕對值大的其值反而小.9、C【解題分析】
根據分式和二次根式有意義的條件進行計算即可.【題目詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【題目點撥】本題考查了函數自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關鍵.10、A【解題分析】
根據題意設未知數,找到等量關系即可解題,見詳解.【題目詳解】解:設購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【題目點撥】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關系是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、相等的圓心角所對的弦相等,直徑所對的圓周角是直角.【解題分析】
根據圓內接正四邊形的定義即可得到答案.【題目詳解】到線段兩端距離相等的點在這條線段的中垂線上;兩點確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【題目點撥】本題主要考查了圓內接正四邊形的定義以及基本性質,解本題的要點在于熟知相關基本知識點.12、﹣ab(a﹣b)2【解題分析】
首先確定公因式為ab,然后提取公因式整理即可.【題目詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【題目點撥】本題考查了因式分解-提公因式法,解題的關鍵是掌握提公因式法的概念.13、6或12或1.【解題分析】
根據題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【題目詳解】請在此輸入詳解!14、;【解題分析】
根據所給多項式的系數特點,可以用十字相乘法進行因式分解.【題目詳解】x2﹣x﹣12=(x﹣4)(x+3).故答案為(x﹣4)(x+3).15、k>2【解題分析】
根據二次函數的性質可知,當拋物線開口向上時,二次項系數k﹣2>1.【題目詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【題目點撥】本題考查二次函數,解題的關鍵是熟練運用二次函數的圖象與性質,本題屬于中等題型.16、上升的【解題分析】
∵拋物線y=x2-1開口向上,對稱軸為x=0(y軸),
∴在y軸右側部分拋物線呈上升趨勢.故答案為:上升的.【題目點撥】本題考查的知識點是二次函數的性質,解題的關鍵是熟練的掌握二次函數的性質.17、【解題分析】
根據二次根式被開方數必須是非負數的條件可得關于x的不等式,解不等式即可得.【題目詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析.【解題分析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據平行四邊形的性質得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據此可得出結論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質.19、(1);(2).【解題分析】
(1)直接利用概率公式計算;(2)畫樹狀圖展示所有36種等可能的結果數,再找出兩人取出的筷子顏色相同的結果數,然后根據概率公式求解.【題目詳解】(1)小麗隨機取出一根筷子是紅色的概率==;(2)畫樹狀圖為:共有36種等可能的結果數,其中兩人取出的筷子顏色相同的結果數為12,所以小麗隨爸爸去看新春燈會的概率==.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式計算事件A或事件B的概率.20、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解題分析】
(1)由點A、B坐標利用待定系數法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據此知BG=2AG.在Rt△ABG中根據BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據正切函數定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據此求得點K(1,).待定系數法求出直線CK的解析式為y=-x+1.設點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據此得ON=m-1.再證△ONQ∽△HMQ得=.據此求得OQ=m-1.從而得出AQ=DM=6-m.結合AQ∥DM可得答案.②當m>6時,同理可得.【題目詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【題目點撥】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、相似三角形的判定與性質、平行四邊形的判定與性質及勾股定理、三角函數等知識點.21、(1)3;(2),理由見解析;理由見解析(3)不存在,理由見解析【解題分析】
(1)將n=4代入n2-2n-5中即可求解;(2)當n=1,2,3,…,9,…,時對應的數分別為3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可歸納出第n個數是3n-2;(3)“在這兩組數中,是否存在同一列上的兩個數相等”,將問題轉換為n2-2n-5=3n-2有無正整數解的問題.【題目詳解】解:(1))∵A組第n個數為n2-2n-5,∴A組第4個數是42-2×4-5=3,故答案為3;(2)第n個數是.理由如下:∵第1個數為1,可寫成3×1-2;第2個數為4,可寫成3×2-2;第3個數為7,可寫成3×3-2;第4個數為10,可寫成3×4-2;……第9個數為25,可寫成3×9-2;∴第n個數為3n-2;故答案為3n-2;(3)不存在同一位置上存在兩個數據相等;由題意得,,解之得,由于是正整數,所以不存在列上兩個數相等.【題目點撥】本題考查了數字的變化類,正確的找出規律是解題的關鍵.22、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解題分析】
(1)由頻數直方圖知組距是50,分組數列中依次填寫100.5,150.5;0.5-50.5的頻數=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調查的樣本容量是100;(3)先求得消費在150元以上的學生的頻率,繼而可求得應對該校1000學生中約多少名學生提出該項建議..【題目詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項建議的人數人.【題目點撥】本題考查了頻數分布表,樣本估計總體、樣本容量等知識.注意頻數分布表中總的頻率之和是1.23、(1)甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)當購買1棵甲種樹、133棵乙種樹時,購買費用最低,理由見解析.【解題分析】
(1)設甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;
(2)設購買甲種樹a棵,則購買乙種樹(200-a)棵,根據甲種樹的數量不少于乙種樹的數量的可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價比乙種樹的單價貴,即可找出最省錢的購買方案.【題目詳解】解:(1)設甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據題意得:
,解得:答:甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)設購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據題意得:解得:∵a為整數,∴a≥1.∵甲種樹的單價比乙種樹的單價貴,∴當購買1棵甲種樹、133棵乙種樹時,購買費用最低.【題目點撥】一元一次不等式的應用,二元一次方程組的應用,讀懂題目,是解題的關鍵.24、(1)①20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明見解析;(2)點P關于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解題分析】【題目詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質得到△PBO為直角三角形,然后依據勾股定理可求得PB的長,然后依據冪值的定義求解即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷年二級建造師管理真題及答案
- 危險化學品安全知識考題及答案
- 堅持夢想努力奮斗的話題作文8篇
- 六一作文1000字:六一趣事作文4篇
- 技術研發及成果轉化合作協議書
- 《近代化學基礎知識概覽:高中化學入門教案》
- 無人機技術在醫療行業中的應用
- 社會實踐活動對小學生的影響
- 環境污染隱患現狀與發展趨勢分析
- 夜空中的星愿抒情作文14篇
- 2025年商業管理與商業模式創新能力考核題及答案
- T/CBMCA 012-2020室內環境清潔消毒服務規范
- 2024年青海省囊謙縣事業單位公開招聘輔警考試題帶答案分析
- 《大學生職業生涯發展與規劃》電子教案-第六章 工作世界探索
- 廣東省深圳市南山區2023-2024學年七年級下學期期末語文試題(含答案)
- 工程力學(山東科技大學)知到智慧樹期末考試答案題庫2025年山東科技大學
- 上海市寶山區2023-2024學年六年級下學期期末語文試題(解析版)
- 補繳社保員工協議書
- 輻照滅菌委托協議書
- 2025標準勞動合同范本及模板
- 食品安全與營養-終結性考核-國開(SC)-參考資料
評論
0/150
提交評論