河南省各地2023-2024學年高二上數學期末統考試題含解析_第1頁
河南省各地2023-2024學年高二上數學期末統考試題含解析_第2頁
河南省各地2023-2024學年高二上數學期末統考試題含解析_第3頁
河南省各地2023-2024學年高二上數學期末統考試題含解析_第4頁
河南省各地2023-2024學年高二上數學期末統考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省各地2023-2024學年高二上數學期末統考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.2.在等比數列中,若,,則()A. B.C. D.3.方程化簡的結果是()A. B.C. D.4.某人忘了電腦屏保密碼的后兩位,但記得最后一位是1,3,5,7,9中的一個數字,倒數第二位是G,O,D中的一個字母,若他嘗試輸入密碼,則一次輸入就解開屏保的概率是()A. B.C. D.5.某工廠去年的電力消耗為千瓦,由于設各更新,該工廠計劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦6.已知函數f(x)的定義域為[-1,5],其部分自變量與函數值的對應情況如下表:x-10245f(x)312.513f(x)的導函數的圖象如圖所示.給出下列四個結論:①f(x)在區間[-1,0]上單調遞增;②f(x)有2個極大值點;③f(x)的值域為[1,3];④如果x∈[t,5]時,f(x)的最小值是1,那么t的最大值為4其中,所有正確結論的序號是()A.③ B.①④C.②③ D.③④7.已知橢圓的左頂點為,上頂點為,右焦點為,若,則橢圓的離心率的取值范圍是()A. B.C. D.8.命題“對任意,都有”的否定是()A.對任意,都有 B.存在,使得C.對任意,都有 D.存在,使得9.雙曲線的焦點到漸近線的距離為()A. B.C. D.10.已知數列的通項公式是,則()A10100 B.-10100C.5052 D.-505211.若,在直線l上,則直線l一個方向向量為()A. B.C. D.12.在平行六面體中,點P在上,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.以點為圓心,且與直線相切的圓的方程是____________14.已知點為橢圓上的動點,為圓的任意一條直徑,則的最大值是__________15.已知圓錐底面半徑為1,高為,則該圓錐的側面積為_____16.已知圓的方程為,點是直線上的一個動點,過點作圓的兩條切線為切點,則四邊形面積的最小值為__________;直線__________過定點.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知p:方程所表示的曲線為焦點在x軸上的橢圓;q:當時,函數恒成立.(1)若p為真,求實數t的取值范圍;(2)若為假命題,且為真命題,求實數t的取值范圍18.(12分)2017年廈門金磚會晤期間產生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態公園通過種植紅樹林的方式中和會晤期間產生的碳排放,擬用20年時間將碳排放全部吸收,實現“零碳排放”目標,向世界傳遞低碳,環保辦會的積極信號,踐行金磚國家倡導的可持續發展精神據研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關系;②證明:是等比數列,并求的通項公式;(2)為了提前5年實現廈門會晤“零碳排放”的目標,m的最小值為多少?參考數據:,,19.(12分)已知橢圓C:的上頂點與橢圓的左右頂點連線的斜率之積為-.(1)求橢圓C的離心率(2)點M(,)在橢圓C上,橢圓的左頂點為D,上頂點為B,點A的坐標為(1,0),過點D的直線L與橢圓在第一象限交于點P,與直線AB交于點Q設L的斜率為k,若,求k的值.20.(12分)設:,:.(1)若命題“,是真命題”,求的取值范圍;(2)若是的充分不必要條件,求的取值范圍.21.(12分)已知(1)求的最小正周期及單調遞增區間;(2)已知鈍角內角A,B,C的對邊長分別a,b,c,若,,.求a的值22.(10分)新冠肺炎疫情期間,某地為了解本地居民對當地防疫工作的滿意度,從本地居民中隨機抽取了1500名居民進行評分(滿分100分),根據調查數據制成如下表格和頻率分布直方圖.滿意度評分滿意度等級不滿意基本滿意滿意非常滿意(1)求a的值;(2)定義滿意度指數,若,則防疫工作需要進行調整,否則不需要調整,根據所學知識判斷該區防疫工作是否需要進行調整?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.2、D【解析】由等比數列的性質得,化簡,代入數值求解.【詳解】因為數列是等比數列,所以,由題意,所以.故選:D3、D【解析】由方程的幾何意義得到是橢圓,進而得到焦點和長軸長求解.【詳解】∵方程,表示平面內到定點、的距離的和是常數的點的軌跡,∴它的軌跡是以為焦點,長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結果故選:D4、C【解析】應用分步計數法求后兩位的可能組合數,即可求一次輸入就解開屏保的概率.【詳解】由題設,后兩位可能情況有,∴一次輸入就解開屏保的概率是.故選:C.5、D【解析】根據等比數列的定義進行求解即可.【詳解】因為去年的電力消耗為千瓦,工廠計劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D6、D【解析】直接利用函數的導函數的圖像,進一步畫出函數的圖像,進一步利用函數的性質的應用求出函數的單調區間,函數的極值和端點值可得結論【詳解】解:由f(x)的導函數的圖像,畫出的圖像,如圖所示,對于①,在區間上單調遞減,所以①錯誤,對于②,有1個極大值點,2個極小值點,所以②錯誤,對于③,根據函數的極值和端點值可知的值域為,所以③正確,對于④,如果x∈[t,5]時,由圖像可知,當f(x)的最小值是1時,t的最大值為4,所以④正確,故選:D7、B【解析】根據題意得到,根據,化簡得到,進而得到離心率的不等式,即可求解.【詳解】由題意,橢圓的左頂點為,上頂點為,所以,,因為,可得,即,又由,可得,可得,解得,又因為橢圓的離心率,所以,即橢圓的離心率為.故選:B.【點睛】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據離心率的定義求解離心率;2、齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.8、B【解析】根據全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因為全稱命題的否定是特稱命題,所以命題“對任意,都有”的否定是“存在,使得”故選:B.9、D【解析】根據題意,由雙曲線的標準方程可得雙曲線的焦點坐標以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據題意,雙曲線的方程為,其焦點坐標為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質,關鍵是求出雙曲線的漸近線與焦點坐標.10、D【解析】根據已知條件,用并項求和法即可求得結果.【詳解】∵∴∴.故選:D.11、C【解析】利用直線的方向向量的定義直接求解.【詳解】因為,在直線l上,所以直線l的一個方向向量為.故選:C.12、C【解析】利用空間向量基本定理,結合空間向量加法的法則進行求解即可.【詳解】因為,,所以有,因此,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據直線與圓相切,圓心到直線距離等于半徑,由點到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:14、【解析】設點,則且,計算得出,再利用二次函數的基本性質即可求得的最大值.【詳解】解:圓的圓心為,半徑長為,設點,由點為橢圓上的動點,可得:且,由為圓的任意一條直徑可得:,,,,,當時,取得最大值,即.故答案為:.15、【解析】由已知求得母線長,代入圓錐側面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側面積S=πrl=2π故答案為2π【點睛】本題考查圓錐側面積的求法,側面積公式S=πrl.16、①.②.【解析】根據切線的相關性質將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點在以為直徑的圓上,且是兩圓的公共弦,設出點坐標,求出圓的方程可得直線方程,即可得出定點.詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當垂直直線時,,所以四邊形的面積的最小值為,可得四點在以為直徑的圓上,且是兩圓的公共弦,設,則圓心為,半徑為,則該圓方程為,整理可得,聯立兩圓可得直線AB的方程為,即可得當時,,故直線過定點.故答案為:;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由給定條件結合橢圓標準方程的特征列不等式求解作答.(2)求命題q真時的t值范圍,再借助“或”聯結的命題為真命題求解作答.【小問1詳解】因方程所表示的曲線為焦點在x軸上的橢圓,則有,解得,所以實數t的取值范圍是.【小問2詳解】,則有,當且僅當,即時取“=”,即,因當時,函數恒成立,則,解得,命題q為真命題有,因為假命題,且為真命題,則與一真一假,當p真q假時,,當p假q真時,,所以實數t的取值范圍是.18、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據題意直接寫出一個遞推公式即可;②要證明是等比數列,只要證明為一個常數即可,求出等比數列的通項公式,即可求出的通項公式;(2)記為數列的前n項和,根據題意求出,利用分組求和法求出數列的前n項和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因為,所以,所以,因為所以數列是等比數列,首項是,公比是1.02,所以,所以;【小問2詳解】解:記為數列的前n項和,,依題,所以,所以m最少為6.56噸19、(1)(2)1【解析】(1)根據橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,由求解;(2)根據點M(,)在橢圓C上,頂點,再由,求得橢圓方程,由,結合,得到,設直線方程為,與橢圓方程聯立,求得點P的坐標,再由,求得Q的坐標,代入求解.【小問1詳解】解:設橢圓C:的上頂點為,左頂點為,右頂點為,因為橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,所以,即,又所以,解得;【小問2詳解】因為點M(,)在橢圓C上,所以,又,解得,所以橢圓方程為,,則,因為,所以,又,所以,則,設,則,當時,則,不合題意;當時,設直線方程為,與題意方程聯立,消去y得:則,所以,則,因為,由,得,因為,所以,化簡得,因,則.20、(1)(2)【解析】(1)解不等式得到解集,根據題意列出不等式組,求出的取值范圍;(2)先解不等式,再根據充分不必要條件得到是的真子集,進而求出的取值范圍.【小問1詳解】因為,由可得:,因為“,”為真命題,所以,即,解得:.即的取值范圍是.【小問2詳解】因為,由可得:,,因為是的充分不必要條件,所以是的真子集,所以(等號不同時取),解得:,即的取值范圍是.21、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡函數,再利用三角函數性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論