貴州省黎平縣第三中學2024屆高二數學第一學期期末調研模擬試題含解析_第1頁
貴州省黎平縣第三中學2024屆高二數學第一學期期末調研模擬試題含解析_第2頁
貴州省黎平縣第三中學2024屆高二數學第一學期期末調研模擬試題含解析_第3頁
貴州省黎平縣第三中學2024屆高二數學第一學期期末調研模擬試題含解析_第4頁
貴州省黎平縣第三中學2024屆高二數學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省黎平縣第三中學2024屆高二數學第一學期期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若“”是“”的充分不必要條件,則實數a的取值范圍為A. B.或C. D.2.將上各點的縱坐標不變,橫坐標變為原來的2倍,得到曲線C,若直線l與曲線C交于A,B兩點,且AB中點坐標為M(1,),那么直線l的方程為()A. B.C. D.3.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,4.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.5.中秋節吃月餅是我國的傳統習俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.6.在數列中抽取部分項(按原來的順序)構成一個新數列,記為,再在數列插入適當的項,使它們一起能構成一個首項為1,公比為3的等比數列.若,則數列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.8207.已知,,且,則向量與的夾角為()A. B.C. D.8.已知命題:,命題:則是的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要9.某校初一有500名學生,為了培養學生良好的閱讀習慣,學校要求他們從四大名著中選一本閱讀,其中有200人選《三國演義》,125人選《水滸傳》,125人選《西游記》,50人選《紅樓夢》,若采用分層抽樣的方法隨機抽取40名學生分享他們的讀后感,則選《西游記》的學生抽取的人數為()A.5 B.10C.12 D.1510.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點.直線AC,BD分別在這個二面角的兩個半平面中,且都垂直于AB,已知,,,則()A. B.C. D.11.如圖,兩個半徑為R的相交大圓,分別內含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區域內隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.12.已知,若,是第二象限角,則=()A. B.5C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知點在圓上,點在圓上,則的最小值是__________14.若在上是減函數,則實數a的取值范圍是_________.15.函數的單調遞減區間是____16.若,均為正數,且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結論正確的是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個法向量.18.(12分)已知等比數列前3項和為(1)求的通項公式;(2)若對任意恒成立,求m的取值范圍19.(12分)已知橢圓C:的左、右焦點分別為F1,F2,離心率為,橢圓C上點M滿足(1)求橢圓C的標準方程:(2)若過坐標原點的直線l交橢圓C于P,Q兩點,求線段PQ長為時直線l的方程20.(12分)已知函數,其中常數,(1)求單調區間;(2)若且對任意,都有,證明:方程有且只有兩個實根21.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值22.(10分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點,求直線PC與平面AED所成的角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】“”是“”的充分不必要條件,結合集合的包含關系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點睛】本題考查充分必要條件,根據充要條件求解參數的范圍時,可把充分條件、必要條件或充要條件轉化為集合間的關系,由此得到不等式(組)后再求范圍.解題時要注意,在利用兩個集合之間的關系求解參數的取值范圍時,不等式是否能夠取等號決定端點值的取舍,處理不當容易出現漏解或增解的現象.2、A【解析】先根據題意求出曲線C的方程,然后利用點差法求出直線l的斜率,從而可求出直線方程【詳解】設點為曲線C上任一點,其在上對應在的點為,則,得,所以,所以曲線C的方程為,設,則,兩方程相減整理得,因為AB中點坐標為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A3、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.4、B【解析】由已知條件得出,結合空間向量數量積的坐標運算可求得實數的值.【詳解】因為,則,解得.故選:B.5、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數,再根據概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.6、C【解析】先根據等比數列的通項公式得到,列出數列的前6項,將其中是數列的項的所有數去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數列,所以,則由,得,即數列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數列的項,3、27、243不是數列的項,且,所以數列中第7項前(不含)插入的項的和最小為.故選:C.7、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.8、B【解析】利用充分條件和必要條件的定義判斷.【詳解】解:若,則或,即或,所以是的必要不充分條件故選:B9、B【解析】根據分層抽樣的方法,列出方程,即可求解.【詳解】根據分層抽樣的方法,可得選《西游記》的學生抽取的人數為故選:B.10、B【解析】根據題意,作,且,則四邊形ABDE為平行四邊形,進一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因為,所以,又,所以是該二面角的一個平面角,即,由余弦定理.因為,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.11、C【解析】設D為線段AB的中點,求得,在中,可得.進而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結果.【詳解】如圖,設D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.12、D【解析】先由誘導公式及同角函數關系得到,再根據誘導公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3-5【解析】因為點在圓上,點在圓上,故兩圓的圓心分別為半徑分別為和兩圓的圓心距為,故兩圓相離,則最小值為,故答案為.考點:1、圓的方程及圓的幾何性質;2、兩點間的距離公式及最值問題.【方法點晴】本題主要考查圓的方程及幾何性質、兩點間的距離公式及最值問題的應用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將解析幾何中最值問題轉化為函數問題,然后根據函數的特征選用參數法、配方法、判別式法、三角函數有界法、函數單調性法以及均值不等式法,本題就是利用圓的幾何性質,將的最小值轉化兩圓心的距離減半徑解答的.14、【解析】根據導數的性質,結合常變量分離法進行求解即可.【詳解】,因為在上是減函數,所以在上恒成立,即,當時,的最小值為,所以,故答案為:15、【解析】求導,根據可得答案.【詳解】由題意,可得,令,即,解得,即函數的遞減區間為.故答案為:.【點睛】本題考查運用導函數的符號,研究函數的單調性,屬于基礎題.16、(1)(2)(4).【解析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數式轉化為關于的二次函數結合由二次函數的性質可得最值判斷C、D,進而可得正確答案.【詳解】對于(1):因為,均為正數,且,則有,當且僅當時等號成立,即的最大值為,故(1)正確;對于(2):因為,當且僅當時等號成立,即的最小值為,故(2)正確;對于(3):因為,所以,在上單調遞減,無最小值,故(3)不正確;對于(4):,當且僅當時等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】建立空間直角坐標系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標系,則設平面ACD1的法向量.,又為平面ACD1的一個法向量,化簡得令x=1,得y=z=1.平面ACD1的一個法向量.【點睛】本題主要考查了求平面的法向量,屬于中檔題.18、(1)(2)【解析】(1)由等比數列的基本量,列式,即可求得首項和公比,再求通項公式;(2)由題意轉化為求數列的前項和的最大值,即可求參數的取值范圍.【小問1詳解】設等比數列的公比為,則,①,即,得,即,代入①得,解得:,所以;【小問2詳解】由(1)可知,數列是首項為2,公比為的等比數列,,若對任意恒成立,即,數列,,單調遞增,的最大值無限趨近于4,所以19、(1)(2)【解析】(1)依題意可得,即可求出、,即可求出橢圓方程;(2)首先求出直線斜率不存在時弦顯然可得直線的斜率存在,設直線方程為、、,聯立直線與橢圓方程,消元列出韋達定理,再根據弦長公式得到方程,求出,即可得解;【小問1詳解】解:依題意,解得,所以橢圓方程為;【小問2詳解】解:當直線的斜率不存在時,直線的方程為,此時,不符合題意;所以直線的斜率存在,設直線方程為,則,消元整理得,設,,則,,所以,即,解得,所以直線的方程為;20、(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)求出函數的導數,談論參數的范圍,根據導數的正負,可得單調區間;(2)由已知可解得,構造函數,再根據(1)的結論,可知函數的單調性,結合零點存在定理,可證明結論.【小問1詳解】定義域為,因為,若,,所以單調遞減區間為,若,,當時,,當時,,所以單調遞減區間為,單調遞增區間為【小問2詳解】證明:若且對任意,都有,則在處取得最小值,由(1)得在取得最小值,得,令,則單調性相同,單調遞減區間為,單調遞增區間為,且,,,所以在(1e2,所以在和各有且僅有一個零點,即方程有且只有兩個實根21、(1)(2)證明見解析【解析】(1)聯立直線和拋物線方程,根據拋物線定義和焦半徑公式得到,根據韋達定理可得到最終結果;(2)代入點坐標可得到參數的值,設直線的方程為,聯立該直線和拋物線方程,,代入韋達定理可得到最終結果.【小問1詳解】設點,,點,,聯立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設,,,,直線的方程為,由,消去得,,,,即為定值22、(1)證明見解析;(2)【解析】(1)根據題意可判斷出ABCD是正方形,從而可得,再根據,由線面垂直的判定定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論