




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省鶴壁市2023年高二數學第一學期期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一動圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線2.已知則是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.拋物線的焦點到準線的距離是A.2 B.4C. D.4.若雙曲線經過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.105.給出命題:若函數是冪函數,則函數的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數是()A.3 B.2C.1 D.06.在空間直角坐標系中,點關于平面的對稱點為,則()A.-4 B.-10C.4 D.107.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.38.已知m,n是兩條不同直線,α,β,γ是三個不同平面,下列命題中正確的為A若α⊥γ,β⊥γ,則α∥β B.若m∥α,m∥β,則α∥βC.若m∥α,n∥α,則m∥n D.若m⊥α,n⊥α,則m∥n9.平面上動點到點的距離與它到直線的距離之比為,則動點的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓10.已知數列是遞減的等比數列,的前項和為,若,,則=()A.54 B.36C.27 D.1811.在平面區域內隨機投入一點P,則點P的坐標滿足不等式的概率是()A. B.C. D.12.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.“第七屆全國畫院美術作品展”于2021年12月2日至2022年2月20日在鄭州美術館展出.已知某油畫作品高2米,寬6米,畫的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應為___________米.14.設拋物線C:的焦點為F,準線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.15.已知數列滿足,,則______.16.已知復數對應的點在復平面第一象限內,甲、乙、丙三人對復數的陳述如下為虛數單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復數______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設橢圓C的上頂點為P,設不經過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點18.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.19.(12分)已知公差不為零的等差數列的前項和為,,且,,成等比數列(1)求的通項公式;(2)記,求數列的前項和20.(12分)已知各項均為正數的等比數列{}的前4項和為15,且.(1)求{}的通項公式;(2)若,記數列{}前n項和為,求.21.(12分)已知等差數列{an}的前n項和為Sn,數列{bn}滿足:點(n,bn)在曲線y=上,a1=b4,___,數列{}的前n項和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個條件中任選一個,補充到上面問題的橫線上并作答(1)求數列{an},{bn}的通項公式;(2)是否存在正整數k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由22.(10分)已知圓:,直線:.圓與圓關于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設動圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關系式,化簡,再根據圓錐曲線的定義,可得到動圓圓心軌跡.【詳解】設動圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據圓與圓相切,則,,兩式相減得,根據定義可得動圓圓心軌跡為雙曲線的一支.故選:C【點睛】本題考查了兩圓的位置關系,圓錐曲線的定義,屬于基礎題.2、A【解析】先解不等式,再比較集合包含關系確定選項.【詳解】因為,所以是的充分不必要條件,選A.【點睛】本題考查解含絕對值不等式、解一元二次不等式以及充要關系判定,考查基本分析求解能力,屬基礎題.3、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準線的距離是,故選D.考點:1、拋物線的標準方程;2、拋物線的幾何性質.4、A【解析】由已知設雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經過點,且它的兩條漸近線方程是,設雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A5、C【解析】若函數是冪函數,則函數的圖象不過第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數的圖象不過第四象限,則函數是冪函數是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個命題中,真命題有一個.選C6、A【解析】根據關于平面對稱的點的規律:橫坐標、縱坐標保持不變,豎坐標變為它的相反數,即可求出點關于平面的對稱點的坐標,再利用向量的坐標運算求.【詳解】解:由題意,關于平面對稱的點橫坐標、縱坐標保持不變,豎坐標變為它的相反數,從而有點關于對稱的點的坐標為(2,?1,-3).故選:A【點睛】本題以空間直角坐標系為載體,考查點關于面的對稱,考查數量積的坐標運算,屬于基礎題7、D【解析】設出直線方程,聯立拋物線方程,得到韋達定理,求得,利用拋物線定義,將目標式轉化為關于的代數式,消元后,利用基本不等式即可求得結果.【詳解】因為拋物線的焦點的坐標為,顯然要滿足題意,直線的斜率存在,設直線的方程為聯立可得,其,設坐標為,顯然,則,,根據拋物線定義,MF=故=4+4令,故4+4當且僅當,即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達定理的使用,基本不等式的使用;其中利用的關系,以及拋物線的定義轉化目標式,是解決問題的關鍵.8、D【解析】根據空間線面、面面的平行,垂直關系,結合線面、面面的平行,垂直的判定定理、性質定理解決【詳解】∵α⊥γ,β⊥γ,α與β的位置關系是相交或平行,故A不正確;∵m∥α,m∥β,α與β的位置關系是相交或平行,故B不正確;∵m∥α,n∥α,m與n的位置關系是相交、平行或異面∴故C不正確;∵垂直于同一平面的兩條直線平行,∴D正確;故答案D【點睛】本題考查線面平行關系判定,要注意直線、平面的不確定情況9、A【解析】設點,利用距離公式化簡可得出點的軌跡方程,即可得出動點的軌跡圖形.【詳解】設點,由題意可得,化簡可得,即,曲線為反比例函數圖象,故動點的軌跡是雙曲線.故選:A.10、C【解析】根據等比數列的性質及通項公式計算求解即可.【詳解】由,解得或(舍去),,,故選:C11、A【解析】根據題意作出圖形,進而根據幾何概型求概率的方法求得答案.【詳解】根據題意作出示意圖,如圖所示:于,所求概率.故選:A.12、C【解析】根據橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質,重點考查轉化與變形,計算能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,進而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設,則,,所以,當且僅當時取“=”.所以該游客離墻距離為米時,觀賞視角最大.故答案為:.14、【解析】根據拋物線的性質及拋物線方程可求坐標,進而得解.【詳解】由拋物線的方程可得焦點,準線,由題意可得,設,有拋物線的性質可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.15、1023【解析】由數列遞推公式求特定項,依次求下去即可解決.【詳解】數列中,則,,,,,,故答案為:102316、##【解析】設,則,然后分別求出甲,乙,丙對應的結論,先假設甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設,則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復數對應的點在復平面第一象限內,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)設橢圓的方程為代入點的坐標求出橢圓的方程,再利用點差法求解;(2)由題得直線的斜率存在,設直線的方程為,聯立直線和橢圓的方程得韋達定理,根據和韋達定理得到,即得證.【小問1詳解】解:由題設橢圓的方程為因為橢圓經過點,所以所以橢圓的方程為.設,所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當直線的斜率不存在時,不符合題意;當直線的斜率存在時,設直線的方程為,聯立方程組y=kx+nx24所以,解得①,設,,,,則②,因為,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時直線的方程為,故直線過定點18、(1)(2)【解析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.19、(1)(2)【解析】(1)設數列的公差為,由,且,,,利用“”法求解;(2)由,利用裂項相消法求解.【小問1詳解】解:,,設數列的公差為,則,,,由題知,整理得,解得,(舍去),,則.【小問2詳解】,則=.20、(1)(2)【解析】(1)設正項的等比數列的公比為,根據題意列出方程組,求得的值,即可求得數列的通項公式;(2)由,結合乘公比錯位相減求和,即可求解.小問1詳解】解:設正項的等比數列的公比為,顯然不為1,因為等比數列前4項和為且,可得,解得,所以數列的通項公式為.【小問2詳解】解:由,所以,可得,兩式相減得,所以.21、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(n,bn)代入曲線y=可得到bn=25﹣n,進而求出a1,設等差數列{an}的公差為d,選①S4=20,利用等差數列的前n項和公式可求出d,從而得到an;若選②S3=2a3,利用等差數列的前n項和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數列的通項公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項相消法求出Tn=1﹣,不等式無解,即不存在正整數k,使得Tk>,且bk>【小問1詳解】解:∵點(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設等差數列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設存在正整數k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數k,使得Tk>,且bk>22、(1)(2)【解析】(1)圓關于直線對稱,半徑不變,只需求出圓心對稱的坐標即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論