廣東省嶺南師院附中東方實驗學校2023年數學高二上期末檢測模擬試題含解析_第1頁
廣東省嶺南師院附中東方實驗學校2023年數學高二上期末檢測模擬試題含解析_第2頁
廣東省嶺南師院附中東方實驗學校2023年數學高二上期末檢測模擬試題含解析_第3頁
廣東省嶺南師院附中東方實驗學校2023年數學高二上期末檢測模擬試題含解析_第4頁
廣東省嶺南師院附中東方實驗學校2023年數學高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省嶺南師院附中東方實驗學校2023年數學高二上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某社區醫院為了了解社區老人與兒童每月患感冒的人數y(人)與月平均氣溫x(℃)之間的關系,隨機統計了某4個月的患?。ǜ忻埃┤藬蹬c當月平均氣溫,其數據如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數據算出線性回歸方程中的,氣象部門預測下個月的平均氣溫約為9℃,據此估計該社區下個月老年人與兒童患病人數約為()A.38 B.40C.46 D.582.我國古代數學著作《算法統宗》中有這樣一段記載:“一百八十九里關,初行健步不為難,次日腳痛減一半,六朝才得到其關.”其大意為:“有一個人共行走了189里的路程,第一天健步行走,從第二天起,因腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天行走的路程為()A.108里 B.96里C.64里 D.48里3.校慶當天,學校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.4.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.5.現有甲、乙、丙、丁、戊五位同學,分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學游戲,先將五個禮物分別放入五個相同的盒子里,每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的概率為()A. B.C. D.6.盤子里有肉餡、素餡和豆沙餡的包子共個,從中隨機取出個,若是肉餡包子的概率為,不是豆沙餡包子的概率為,則素餡包子的個數為()A. B.C. D.7.已知等差數列前項和為,若,則的公差為()A.4 B.3C.2 D.18.執行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.29.若圓與圓相外切,則的值為()A. B.C.1 D.10.在直三棱柱中,側面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.11.計算復數:()A. B.C. D.12.已知直線與x軸,y軸分別交于A,B兩點,且直線l與圓相切,則的面積的最小值為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人獨立地破譯一份密碼,已知各人能破譯的概率分別為,則密碼被成功破譯的概率_________14.若數列滿足,,設,類比課本中推導等比數列前項和公式的方法,可求得______________15.已知圓C,直線l:,若圓C上恰有四個點到直線l的距離都等于1.則b的取值范圍為___.16.函數在點處的切線方程是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數R)(1)當時,求函數的圖象在處的切線方程;(2)求的單調區間18.(12分)銳角中滿足,其中分別為內角的對邊(I)求角;(II)若,求的取值范圍19.(12分)一臺還可以用的機器由于使用的時間較長,它按不同的轉速生產出來的某機械零件有一些會有缺陷,每小時生產有缺陷零件的多少隨機器運轉的速率而變化,下表為抽樣試驗結果:轉速(轉/秒)1615129每小時生產有缺陷的零件數(件)10985通過觀察散點圖,發現與有線性相關關系:(1)求關于的回歸直線方程;(2)若實際生產中,允許每小時生產的產品中有缺陷的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?(參考:回歸直線方程為,其中,)20.(12分)如圖甲,在直角三角形中,已知,,,D,E分別是的中點.將沿折起,使點A到達點的位置,且,連接,得到如圖乙所示的四棱錐,M為線段上一點.(1)證明:平面平面;(2)過B,C,M三點的平面與線段A'E相交于點N,從下列三個條件中選擇一個作為已知條件,求直線DN與平面A'BC所成角的正弦值.①;②直線與所成角的大小為;③三棱錐的體積是三棱錐體積的注:如果選擇多個條件分別解答,按第一個解答計分.21.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積22.(10分)新疆長絨棉品質優良,纖維柔長,被世人譽為“棉中極品”,產于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質量的重要指標之一,在新疆某地區成熟的長絨棉中隨機抽測了一批棉花的纖維長度(單位:mm),將樣本數據制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數據的平均數(同一組中的數據用該組數據區間的中點值為代表);(3)根據棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區成熟的棉花中隨機抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達到特等品的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由表格數據求樣本中心,根據線性回歸方程過樣本中心點,將點代入方程求參數,寫出回歸方程,進而估計下個月老年人與兒童患病人數.【詳解】由表格得為,由回歸方程中的,∴,解得,即,當時,.故選:B.2、B【解析】根據題意,記該人每天走的路程里數為,分析可得每天走的路程里數構成以的為公比的等比數列,由求得首項即可【詳解】解:根據題意,記該人每天走的路程里數為,則數列是以的為公比的等比數列,又由這個人走了6天后到達目的地,即,則有,解可得:,故選:B.【點睛】本題考查數列的應用,涉及等比數列的通項公式以及前項和公式的運用,注意等比數列的性質的合理運用.3、B【解析】在出矩形中,設,得到,結合基本不等式,即可求解【詳解】如圖所示,在矩形中,設,則,根據題意,可得矩形圍欄總長為因為,可得,當且僅當時,即時,等號成立,即圍欄總長最小需要米.故選:B.4、D【解析】設雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.5、D【解析】利用排列組合知識求出每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的情況個數,以及五人抽取五個禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數為種情況,故恰有一位同學拿到自己禮物的概率為.故選:D6、C【解析】計算出肉餡包子和豆沙餡包子的個數,即可求得素餡包子的個數.【詳解】由題意可知,肉餡包子的個數為,從中隨機取出個,不是豆沙餡包子的概率為,則該包子是豆沙餡包子的概率為,所以,豆沙餡包子的個數為,因此,素餡包子的個數為.故選:C.7、A【解析】由已知,結合等差數列前n項和公式、通項公式列方程組求公差即可.詳解】由題設,,解得.故選:A8、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數的最小正周期為,,,所以.故選:A9、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D10、C【解析】分析得出,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因為,,則,,因為平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則點、、、,,,,因此,異面直線與所成的角為.故選:C.11、D【解析】直接利用復數代數形式的乘除運算化簡可得結論.【詳解】故選:D.12、A【解析】由直線與圓相切可得,再利用基本不等式即求.【詳解】由已知可得,,因為直線與圓相切,所以,即,因為,當且僅當時取等號,所以,,所以面積的最小值為1.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據題意,由相互獨立事件概率的乘法公式可得密碼沒有被破譯的概率,進而由對立事件的概率性質分析可得答案【詳解】解:根據題意,甲乙兩人能成功破譯的概率分別是,,則密碼沒有被破譯,即甲乙都沒有成功破譯密碼概率,故該密碼被成功破譯的概率故答案為:14、n【解析】先對兩邊同乘以4,再相加,化簡整理即可得出結果.【詳解】由①得:②所以①②得:,所以,,故答案為【點睛】本題主要考查類比推理的思想,結合錯位相減法思想即可求解,屬于基礎題型.15、【解析】根據圓的幾何性質,結合點到直線距離公式進行求解即可.【詳解】圓C:的半徑為3,圓心坐標為:設圓心到直線l:的距離為,要想圓C上恰有四個點到直線l的距離都等于1,只需,即,所以.故答案為:.16、【解析】求得函數的導數,得到且,再結合直線的點斜式,即可求解.【詳解】由題意,函數,可得,則且,所以在點處切線方程是,即故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解析】(1)根據切點處的導數等于切線斜率,切點在曲線上可得切線方程;(2)求導,分類討論可得.【小問1詳解】當時,,,,則,所以在處的切線方程為【小問2詳解】,,當時,,函數在R上單調遞增;當時,令,則,當時,,單調遞減;當時,,單調遞增當時,的單調遞增區間為,當時,的單調遞增區間為,單調遞減區間為18、(I);(II)【解析】(I)由正弦定理邊角互化并整理得,進而由余弦定理得;(II)正弦定理得,故,再根據三角恒等變換得,由于銳角中,,進而根據三角函數性質求得答案.【詳解】解:(I)由正弦定理得所以,即,所以,因為銳角中,,所以;(II)因為,,所以所以,因為,所以,所以,所以,所以19、(1);(2)控制在16轉/秒內.【解析】(1)結合已知數據,代入公式中,先求出,然后求出,進而可求出,從而可得回歸方程.(2)由題意得,即可求出轉速的最高速度.【詳解】解:(1)由題意知,,所以,則,即關于的回歸直線方程為.(2)由可得,解得,所以機器的運轉速度應控制在16轉/秒內.20、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理及面面垂直的判定定理可得證;(2)分別選①,②,③可求得為的中點,再以為坐標原點,向量的方向分別為軸,軸,軸建立空間直角坐標系.利用空間向量求得所求的線面角.【小問1詳解】分別為的中點,.,,.,,平面.又平面,∴平面平面.【小問2詳解】(2)選①,;,,,,為的中點.選②,直線與所成角的大小為;,∴直線與所成角為.又直線與所成角的大小為,,,為的中點.選③,三棱錐的體積是三棱錐體積的,又,即,為的中點.∵過三點的平面與線段相交于點平面,平面.又平面平面,,為的中點.兩兩互相垂直,∴以為坐標原點,向量的方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標系.則;.設平面的一個法向量為,直線與平面所成的角為.由,得.令,得.則.∴直線與平面所成角的正弦值為.21、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論