




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第8章假設(shè)檢驗(yàn)8.1假設(shè)檢驗(yàn)的問題8.2單個總體的假設(shè)檢驗(yàn)8.3兩個總體的假設(shè)檢驗(yàn)8.4假設(shè)檢驗(yàn)的進(jìn)一步討論統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)1第8章假設(shè)檢驗(yàn)8.1假設(shè)檢驗(yàn)的問題統(tǒng)計學(xué)賈俊平第章假需要無罪證明的證明引例統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)2需要無罪證明的證明引例統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)2引例引例1:再談女士品茶在實(shí)驗(yàn)中,那位女士被奉上一連串的已經(jīng)調(diào)制好的茶,其中,有的是先加茶有的先加奶,各占一半情形一:如果只給那位女士一杯茶,那么即使她沒有區(qū)分能力,她也有50%的機(jī)會猜對。如果給兩杯茶,她仍可能猜對。事實(shí)上,如果她知道兩杯茶分別以不同的方式調(diào)制,她可能一下子全部猜對(或全部猜錯)情形二:這位女士能做出區(qū)分,她仍然有猜錯的可能。或者是其中的一杯與奶沒有充分地混合,或者是泡制時茶水不夠熱。即便這位女士能做出區(qū)分,也很有可能是奉上了10杯茶,她卻只是猜對了其中的9杯
統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)3引例引例1:再談女士品茶統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)3引例引例2:維生素真相(見BBC視頻)2007年2月28日出版的國際權(quán)威醫(yī)學(xué)雜志《美國醫(yī)學(xué)會雜志》發(fā)表了一項(xiàng)由多國研究人員共同完成的研究。這項(xiàng)研究顯示,服用維生素E死亡率增加4%,服用茁胡蘿卜素死亡率增加7%,服用維生素A死亡率增加16%,沒有證據(jù)表明維生素C能延年益壽統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)4引例引例2:維生素真相(見BBC視頻)統(tǒng)計學(xué)賈俊平第章假設(shè)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)5統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)58.1假設(shè)檢驗(yàn)的一般問題統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)68.1假設(shè)檢驗(yàn)的一般問題統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)6假設(shè)檢驗(yàn)的基本思想假設(shè)的陳述兩類錯誤與顯著性水平檢驗(yàn)統(tǒng)計量與拒絕域檢驗(yàn)中的P值統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)7假設(shè)檢驗(yàn)的基本思想統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)7假設(shè)檢驗(yàn)的基本思想什么是假設(shè)(hypothesis)?對總體參數(shù)的具體數(shù)值所作的陳述總體參數(shù)包括總體均值、比率、方差等分析之前必須陳述我認(rèn)為這種新藥的療效比原有的藥物更有效!統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)8假設(shè)檢驗(yàn)的基本思想什么是假設(shè)(hypothesis)?我假設(shè)檢驗(yàn)的基本思想假設(shè)檢驗(yàn)(hypothesistesting)先給予總體未知參數(shù)一個假設(shè)值,再利用樣本或?qū)嶒?yàn)結(jié)果來推斷此假設(shè)的可信度。邏輯上采用反證法,依據(jù)統(tǒng)計上的小概率原理概率證偽統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)9假設(shè)檢驗(yàn)的基本思想假設(shè)檢驗(yàn)(hypothesistest假設(shè)檢驗(yàn)的基本思想小概率原理在一次試驗(yàn)中,一個幾乎不可能發(fā)生稱為小概率事件在一次試驗(yàn)中小概率事件一旦發(fā)生,我們就有理由拒絕原假設(shè)小概率的大小一般由研究者事先確定統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)10假設(shè)檢驗(yàn)的基本思想小概率原理統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)10假設(shè)檢驗(yàn)的基本思想IdentifythePopulationAssumethepopulation平均GPA(學(xué)分績點(diǎn))is3.5(
)REJECTTakeaSampleNullHypothesisNo,notlikely!統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)11假設(shè)檢驗(yàn)的基本思想IdentifythePopulati假設(shè)檢驗(yàn)的基本思想=3.5不太可能得到這個樣本均值......如果事實(shí)上,這正是總體的均值....因此我們拒絕原假設(shè)=3.5.μ
的抽樣分布2.4如果H0為真統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)12假設(shè)檢驗(yàn)的基本思想=3.5不太可能得到這個樣本均值..假設(shè)的陳述原假設(shè)和備擇假設(shè)原假設(shè)?(nullhypothesis)稻草人待檢驗(yàn)的假設(shè),又稱“0假設(shè)”研究者想收集證據(jù)予以反對的假設(shè)總是有等號
,
或
表示為H0
例如,
H0:
某特定值若為不等式(
或)
也可寫為=
例
H0:
3.5統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)13假設(shè)的陳述原假設(shè)和備擇假設(shè)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)13假設(shè)的陳述備擇假設(shè)(alternativehypothesis)與原假設(shè)對立的假設(shè),也稱“研究假設(shè)”這與原假設(shè)為互斥研究者想收集證據(jù)予以支持的假設(shè)。總是有不等號:
,
或
表示為H1
例如,H1:
<某特定值
如H1:
<3.5
統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)14假設(shè)的陳述備擇假設(shè)(alternativehypothe假設(shè)的陳述零假設(shè)的提出所假設(shè)的總體參數(shù)值為研究者認(rèn)為不對的總體參數(shù)值實(shí)質(zhì):科學(xué)研究中的保守主義比如:新的工藝或技術(shù)沒有造成任何改變,新藥沒有任何療效,變量間沒有聯(lián)系統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)15假設(shè)的陳述零假設(shè)的提出統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)15假設(shè)的陳述例析消協(xié)接到很多消費(fèi)者的投訴:超市中五磅的碎牛肉缺斤少兩。消協(xié)檢查時,原及備擇假設(shè)為:市政府所用的紅綠燈平均壽命為2000小時,一家制造商宣稱他們新產(chǎn)品比原來的壽命要長,且價格相同。市政府想要測試新燈泡的壽命是否超過2000小時,原及備擇假設(shè)為:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)16假設(shè)的陳述例析統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)16假設(shè)的陳述一家公司的產(chǎn)品市場占有率為30%,公司在某些區(qū)域測試新推出的廣告,要檢驗(yàn)廣告是否會增加銷售:汽車車門的油漆平均五年會開始脫落,某科學(xué)家宣稱新的油漆壽命比較長,汽車公司想測試新油漆的壽命:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)17假設(shè)的陳述一家公司的產(chǎn)品市場占有率為30%,公司在某些區(qū)域測假設(shè)的陳述選擇的結(jié)果
由于我們只有在證據(jù)很充分的情況下才能推翻原假設(shè),因此原假設(shè)比備擇假設(shè)占據(jù)更有利的地位,假設(shè)的寫法對于結(jié)果有很大影響例:FoodandDrugAdministration(FDA)在核準(zhǔn)新藥上市中,面臨以下兩個可能的結(jié)果
新藥對于大眾有益
新藥對于大眾無益處兩者都可以被選為nullhypothesis統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)18假設(shè)的陳述選擇的結(jié)果統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)18假設(shè)的陳述若FDA選擇以下的方式:
H0:新藥對于大眾沒有益處不應(yīng)該上市
H1:新藥對于大眾有益處此時藥廠必須舉證推翻H0,否則FDA不會核準(zhǔn)新藥上市由于這種假設(shè)方式,美國的新藥上市過程十分冗長,但好處為有害藥物要上市十分困難統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)19假設(shè)的陳述若FDA選擇以下的方式:統(tǒng)計學(xué)賈俊平第章假設(shè)檢假設(shè)的陳述若FDA選擇以下的方式:
H0:新藥對于大眾有益處應(yīng)該上市。
H1:新藥對于大眾沒有益處不應(yīng)該上市。此時除非有強(qiáng)而有力的證據(jù)顯示藥物無效或有害,否則暫且假定此藥為有益處的。這種方式可以使新藥快速上市,但風(fēng)險也很高統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)20假設(shè)的陳述若FDA選擇以下的方式:統(tǒng)計學(xué)賈俊平第章假設(shè)檢假設(shè)的陳述評述實(shí)際上,假設(shè)檢驗(yàn)中,我們計算的條件概率為:P(observeddata|theoryistrue)即在假設(shè)理論為真的前提下,觀察到目前樣本數(shù)據(jù)的概率為何?如果理論為真,則樣本數(shù)據(jù)應(yīng)比較有可能是…比較不可能是…若觀察到與理論一致的樣本(較有可能發(fā)生的樣本),則暫且假定理論為真若觀察到樣本在理論為真的假設(shè)下不太可能發(fā)生,則推翻理論統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)21假設(shè)的陳述評述統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)21假設(shè)的陳述對提出假設(shè)的建議原假設(shè)和備擇假設(shè)是一個完備事件組,而且相互對立
在一項(xiàng)假設(shè)檢驗(yàn)中,原假設(shè)和備擇假設(shè)必有一個成立,而且只有一個成立先確定備擇假設(shè),再確定原假設(shè)等號“=”總是放在原假設(shè)上,為什么?因研究目的不同,對同一問題可能提出不同的假設(shè)(也可能得出不同的結(jié)論)檢驗(yàn)的目的主要是收集證據(jù)拒絕原假設(shè)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)22假設(shè)的陳述對提出假設(shè)的建議統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)22雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)雙側(cè)檢驗(yàn)備擇假設(shè)沒有特定的方向性,無論是大于還是小于某一假設(shè)值,都必需采取相應(yīng)的行動措施例如,某種零件的尺寸,要求其平均長度為10cm,大于或小于10cm均屬于不合格我們想要證明(檢驗(yàn))大于或小于這兩種可能性中的任何一種是否成立建立的原假設(shè)與備擇假設(shè)應(yīng)為
H0:
=10H1:
10統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)23雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)雙側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)23雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)單側(cè)檢驗(yàn)備擇假設(shè)具有特定的方向性,并含有符號“>”或“<”的假設(shè)檢驗(yàn),稱為單側(cè)檢驗(yàn)或單尾檢驗(yàn)(one-tailedtest)備擇假設(shè)的方向?yàn)椤?lt;”,稱為左側(cè)檢驗(yàn)備擇假設(shè)的方向?yàn)椤?gt;”,稱為右側(cè)檢驗(yàn)
統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)24雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)單側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)24雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)例析:一項(xiàng)研究表明,采用新技術(shù)生產(chǎn)后,將會使產(chǎn)品的使用壽命明顯延長到1500小時以上。檢驗(yàn)這一結(jié)論是否成立研究者總是想證明自己的研究結(jié)論(壽命延長)是正確的備擇假設(shè)的方向?yàn)椤?gt;”(壽命延長)建立的原假設(shè)與備擇假設(shè)應(yīng)為
H0:
1500H1:
1500統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)25雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)例析:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)25雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)一項(xiàng)研究表明,改進(jìn)生產(chǎn)工藝后,會使產(chǎn)品的廢品率降低到2%以下。檢驗(yàn)這一結(jié)論是否成立研究者總是想證明自己的研究結(jié)論(廢品率降低)是正確的備擇假設(shè)的方向?yàn)椤?lt;”(廢品率降低)建立的原假設(shè)與備擇假設(shè)應(yīng)為
H0:
2%H1:
<2%統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)26雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)一項(xiàng)研究表明,改進(jìn)生產(chǎn)工藝后,會使產(chǎn)品的廢雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)?zāi)碂襞葜圃焐搪暦Q,該企業(yè)所生產(chǎn)的燈泡的平均使用壽命在1000小時以上。如果你準(zhǔn)備進(jìn)一批貨,怎樣進(jìn)行檢驗(yàn)檢驗(yàn)權(quán)在銷售商一方作為銷售商,你總是想收集證據(jù)證明生產(chǎn)商的說法(壽命在1000小時以上)是不正確的備擇假設(shè)的方向?yàn)椤?lt;”(壽命不足1000小時)建立的原假設(shè)與備擇假設(shè)應(yīng)為
H0:
1000H1:
<1000統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)27雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)?zāi)碂襞葜圃焐搪暦Q,該企業(yè)所生產(chǎn)的燈泡的平均雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)假設(shè)研究的問題雙側(cè)檢驗(yàn)左側(cè)檢驗(yàn)右側(cè)檢驗(yàn)H0m=m0m
m0m
m0H1m≠m0m<m0m>m0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)28雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)假設(shè)研究的問題雙側(cè)檢驗(yàn)左側(cè)檢驗(yàn)右側(cè)檢驗(yàn)H0兩類錯誤與顯著性水平兩類錯誤統(tǒng)計檢驗(yàn)有點(diǎn)像法院審案,在樣本數(shù)據(jù)(證據(jù))還沒有充分顯示嫌疑人“有罪”之前,我們暫且假定原假設(shè)為:嫌疑人“無罪”在法院的審判中有兩種可能的錯誤:無罪的人被誤判為有罪,有罪的人被無罪釋放統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)29兩類錯誤與顯著性水平兩類錯誤統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)29兩類錯誤與顯著性水平(續(xù))與法院審判類似,檢驗(yàn)也有兩種犯錯的可能:nullhypothesis在正確的情況下被推翻(typeIerror錯殺無辜)及nullhypothesis不正確但沒有被拒絕(typeIIerror放縱壞人)“辛普森殺妻案”“聶樹斌案”統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)30兩類錯誤與顯著性水平(續(xù))與法院審判類似,檢驗(yàn)也有兩種犯錯的H0:無罪陪審團(tuán)審判裁決實(shí)際情況無罪有罪無罪正確錯誤有罪錯誤正確H0檢驗(yàn)決策實(shí)際情況H0為真H0為假未拒絕H0正確決策(1–
a)第Ⅱ類錯誤(b)拒絕H0第Ⅰ類錯誤(a)正確決策(1-b)假設(shè)檢驗(yàn)就好像一場審判過程假設(shè)檢驗(yàn)過程兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)31H0:無罪陪審團(tuán)審判裁決實(shí)際情況無罪有罪無罪正確錯誤有罪錯第一類錯誤和第二類錯誤第一類錯誤(棄真錯誤)原假設(shè)為真時拒絕原假設(shè)第一類錯誤的概率為,即顯著性水平(1-
)則置信水平兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)32第一類錯誤和第二類錯誤兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章第二類錯誤(取偽錯誤)原假設(shè)為假時沒有拒絕原假設(shè)第二類錯誤的概率為
(Beta)Thepowerofthetestis(1-)兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)33第二類錯誤(取偽錯誤)兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章例析USAToday報導(dǎo)在美國非法賭博的金額至少平均每人每年$200,你覺得這個數(shù)字太過于夸張,因此找了n個人的樣本來估計每年非法賭博的平均金額。你想要檢驗(yàn)的假設(shè)為:
H0:μ≧$200
H1:μ<$200兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)34例析兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)34假設(shè)真正的總體均值為$200,如果你估計的樣本平均遠(yuǎn)低于$200,則你會推翻正確的假設(shè),從而而犯下型I錯誤如果實(shí)際非法賭博的金額遠(yuǎn)低于$200,即H0并不正確,但你運(yùn)氣欠佳,得到的樣本估計的均值十分接近200,則你應(yīng)該推翻H0。但樣本數(shù)據(jù)卻不足以推翻錯誤的假設(shè),此時你犯了型II的錯誤兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)35假設(shè)真正的總體均值為$200,如果你估計的樣本平均遠(yuǎn)低于$2切記當(dāng)檢驗(yàn)統(tǒng)計量落在拒絕域(rejectionregion)內(nèi),不代表我們證明(prove)原假設(shè)為錯誤的。只能說我們對于原假設(shè)所陳述的內(nèi)容真實(shí)性有很大的懷疑—原假設(shè)不是不正確,就是極不可能發(fā)生同理,當(dāng)檢驗(yàn)統(tǒng)計量落在無法拒絕域中,并不是證明(prove)零假設(shè)為真,僅是表示證據(jù)不足以推翻零假設(shè)兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)36切記兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)36例析飲料的例子拒絕域無法拒絕域
=0
=.05兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)37例析拒絕域無法拒絕域=0=.05兩類錯誤與顯著性水平統(tǒng)計
=.05拒絕Ho無法拒絕
Ho
HoisTrueHoisFalse95%
=.8023正確決策第I類錯誤第II類錯誤正確決策19.77%
Z0Z1如果μ=11.99兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)38=.05拒絕Ho無法拒絕HoHoisTrueH
=.05
HoisTrueHoisFalse95%
拒絕Ho無法拒絕
Ho
=.0708正確決策第I類錯誤第II類錯誤正確決策92.92%
Z0Z1如果μ=11.96兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)39=.05HoisTrueHoisFalse95%00.10.20.30.40.50.60.70.80.9111.9511.9611.9711.9811.9912Probability
(1-b)概率的變化兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)4000.10.20.30.40.50.60.70.80.911
和的關(guān)系就像翹翹板,小就大,大就小Reduceprobabilityofoneerrorandtheotheronegoesupholdingeverythingelseunchanged.兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)41和的關(guān)系就像翹翹板,小就大,大就小Redu影響
錯誤的因素總體參數(shù)的真值隨著假設(shè)的總體參數(shù)與真實(shí)參數(shù)值差異的減小而增大顯著性水平
當(dāng)減少時增大n兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)42影響錯誤的因素n兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章顯著性水平
(significantlevel)顯著性水平是一個概率值P(零假設(shè)不被接受|零假設(shè)為真)原假設(shè)為真時,拒絕原假設(shè)的概率抽樣分布的拒絕域的面積表示為
(alpha)常用的值有0.01,0.05,0.10由研究者事先確定兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)43顯著性水平(significantlevel)兩類錯誤如何選擇
考慮犯錯誤的代價:地震?ChooseSmallerTypeIErrorWhentheCostofRejectingtheMaintainedHypothesisisHighLevelAcriminaltrial:convictinganinnocentperson挑戰(zhàn)者號失事與檢驗(yàn)功效兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)44如何選擇兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)44原假設(shè)在檢驗(yàn)前被視為是正確的,除非有充分的證據(jù),不然我們不輕易推翻原假設(shè)。通常我們選擇極小的顯著水平如.01或.05來確保我們不會推翻一個正確的原假設(shè)兩類錯誤與顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)45原假設(shè)在檢驗(yàn)前被視為是正確的,除非有充分的證據(jù),不然我們不輕檢驗(yàn)統(tǒng)計量與拒絕域檢驗(yàn)統(tǒng)計量根據(jù)樣本觀測結(jié)果計算得到的,并據(jù)以對原假設(shè)和備擇假設(shè)作出決策的某個樣本統(tǒng)計量對樣本估計量的標(biāo)準(zhǔn)化結(jié)果假設(shè)H0為真點(diǎn)估計量的抽樣分布
標(biāo)準(zhǔn)化的檢驗(yàn)統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)46檢驗(yàn)統(tǒng)計量與拒絕域檢驗(yàn)統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)46檢驗(yàn)統(tǒng)計量與拒絕域拒絕域根據(jù)顯著性水平,我們可以將檢驗(yàn)統(tǒng)計量分成窮盡及互斥的兩組數(shù)值區(qū)域:Therejectionregion
(拒絕域)Thenonrejectionregion
(無法拒絕域)臨界值是區(qū)分拒絕域及無法拒絕域的界線。統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)47檢驗(yàn)統(tǒng)計量與拒絕域拒絕域統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)47檢驗(yàn)統(tǒng)計量與拒絕域000aaa/2
臨界值拒絕域統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)48檢驗(yàn)統(tǒng)計量與拒絕域000aaa/2臨界值拒檢驗(yàn)統(tǒng)計量與拒絕域(續(xù))抽樣分布H0值臨界值臨界值a/2a/2樣本統(tǒng)計量拒絕域拒絕域1-
置信水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)49檢驗(yàn)統(tǒng)計量與拒絕域(續(xù))抽樣分布H0值臨界值臨界值a/2a檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值臨界值a/2a/2樣本統(tǒng)計量拒絕域拒絕域1-
置信水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)50檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值臨界值a/2a/2檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值臨界值a/2a/2樣本統(tǒng)計量拒絕域拒絕域1-
置信水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)51檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值臨界值a/2a/2檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值臨界值a/2a/2樣本統(tǒng)計量拒絕域拒絕域1-
置信水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)52檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值臨界值a/2a/2檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值a樣本統(tǒng)計量拒絕域1-
置信水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)53檢驗(yàn)統(tǒng)計量與拒絕域抽樣分布H0值臨界值a樣本統(tǒng)計量拒絕域1檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-
置信水平觀察到的樣本統(tǒng)計量左側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)54檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-置檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-
置信水平觀察到的樣本統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)55檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-置檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-
置信水平觀察到的樣本統(tǒng)計量右側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)56檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-置檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-
置信水平觀察到的樣本統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)57檢驗(yàn)統(tǒng)計量與拒絕域H0值臨界值a樣本統(tǒng)計量拒絕域1-置檢驗(yàn)統(tǒng)計量與拒絕域統(tǒng)計決策將檢驗(yàn)統(tǒng)計量的值與
水平的臨界值進(jìn)行比較,給定顯著性水平
,查表得出相應(yīng)的臨界值z
或z
/2,t
或t
/2作出決策雙側(cè)檢驗(yàn):I統(tǒng)計量I>臨界值,拒絕H0左側(cè)檢驗(yàn):統(tǒng)計量<-臨界值,拒絕H0右側(cè)檢驗(yàn):統(tǒng)計量>臨界值,拒絕H0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)58檢驗(yàn)統(tǒng)計量與拒絕域統(tǒng)計決策統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)58檢驗(yàn)統(tǒng)計量與拒絕域注意根據(jù)樣本所提供的信息,我們面臨兩種可能的決定:
拒絕nullhypothesis(rejectingH0)
無法拒絕nullhypothesis(notrejectingH0)有人會說接受acceptednullhypothesis,不過較為正確的說法應(yīng)該是無法拒絕或無法推翻H0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)59檢驗(yàn)統(tǒng)計量與拒絕域注意統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)59假設(shè)檢驗(yàn)中的P值P值(P-value)的緣起在假設(shè)檢定中,我們通常會事先決定顯著水平α,然后根據(jù)決定之后的α值找出拒絕域及接受域但在很多的情況下,我們無法預(yù)估typeI錯誤及typeII錯誤的成本,因此無法確定合意的α值。所以有時候我們直接指出得到觀察統(tǒng)計量的概率統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)60假設(shè)檢驗(yàn)中的P值P值(P-value)的緣起統(tǒng)計學(xué)賈俊平第假設(shè)檢驗(yàn)中的P值P值如果原假設(shè)為真,P-值是抽樣分布中大于或小于樣本統(tǒng)計量的概率左側(cè)檢驗(yàn)時,P-值為曲線上方小于等于檢驗(yàn)統(tǒng)計量部分的面積右側(cè)檢驗(yàn)時,P-值為曲線上方大于等于檢驗(yàn)統(tǒng)計量部分的面積被稱為觀察到(theobservedsignificantlevel)的顯著性水平統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)61假設(shè)檢驗(yàn)中的P值P值統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)61假設(shè)檢驗(yàn)中的P值P-value告訴我們:「如果零假設(shè)為真,我們觀察到目前數(shù)據(jù)顯示的檢驗(yàn)統(tǒng)計量的概率有多高?」如果這個概率很小,則我們可以拒絕零假設(shè),因?yàn)槿绻僭O(shè)為真,則僅有很小的概率抽取任意的隨機(jī)樣本會得到目前的觀察值P-value是不僅止于告訴我們在某一顯著水平下是否拒絕H0,如果我們知道P-value=.002則我們知道H0不但在.05的顯著水平下會被拒絕,在.005的水平下也會被拒絕統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)62假設(shè)檢驗(yàn)中的P值P-value告訴我們:「如果零假設(shè)為真,假設(shè)檢驗(yàn)中的P值如果僅知道P-value=.04,則是否拒絕H0可以由讀者來決定,如果某一研究人員決得.01才算顯著,則H0不會被拒絕,如果將顯著水平置于.05,則拒絕一般在研究報告中,研究者經(jīng)常直接寫出p-value而讓讀者自己去決定是否要拒絕H0一些證據(jù):P〈.010適度證據(jù):P〈.005很強(qiáng)證據(jù):P〈.001統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)63假設(shè)檢驗(yàn)中的P值如果僅知道P-value=.04,則是否拒假設(shè)檢驗(yàn)中的P值
/2
/2Z拒絕拒絕H0值臨界值計算出的樣本統(tǒng)計量計算出的樣本統(tǒng)計量臨界值1/2P值1/2P值雙側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)64假設(shè)檢驗(yàn)中的P值/2/2Z拒絕拒絕H0值臨界值計假設(shè)檢驗(yàn)中的P值H0值臨界值a樣本統(tǒng)計量拒絕域抽樣分布1-
置信水平計算出的樣本統(tǒng)計量P值左側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)65假設(shè)檢驗(yàn)中的P值H0值臨界值a樣本統(tǒng)計量拒絕域抽樣分布1-假設(shè)檢驗(yàn)中的P值H0值臨界值a拒絕域抽樣分布1-
置信水平計算出的樣本統(tǒng)計量P值右側(cè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)66假設(shè)檢驗(yàn)中的P值H0值臨界值a拒絕域抽樣分布1-置信水小結(jié):假設(shè)檢驗(yàn)的步驟臨界值方法P值方法第1步確定零假設(shè)和備擇假設(shè)第1步確定零假設(shè)和備擇假設(shè)第2步抽取隨機(jī)樣本第2步抽取隨機(jī)樣本第3步確定適當(dāng)檢驗(yàn)統(tǒng)計量并用樣本數(shù)據(jù)計算其具體值第3步確定檢驗(yàn)統(tǒng)計量的值第4步確定顯著性水平,計算臨界值及拒絕域第4步計算P值第5步比較檢驗(yàn)統(tǒng)計量的值與臨界值,決定拒絕還是無法拒絕原假設(shè)第5步比較P值和α,如果小于α則拒絕原假設(shè),否則無法拒絕第6步給出假設(shè)檢驗(yàn)的結(jié)論第6步給出假設(shè)檢驗(yàn)的結(jié)論統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)67小結(jié):假設(shè)檢驗(yàn)的步驟臨界值方法P值方法第1步確定零假設(shè)和8.2單個總體的假設(shè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)688.2單個總體的假設(shè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)68Z檢驗(yàn)(單尾和雙尾)
t檢驗(yàn)(單尾和雙尾)Z檢驗(yàn)(單尾和雙尾)
2檢驗(yàn)(單尾和雙尾)均值單個總體比例方差統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)69Z檢驗(yàn)t檢驗(yàn)Z檢驗(yàn)2檢驗(yàn)均值單個總體比例方差統(tǒng)計單個總體均值檢驗(yàn)總體是否已知?用樣本標(biāo)準(zhǔn)差S代替t檢驗(yàn)小樣本容量n否是z檢驗(yàn)
z檢驗(yàn)大統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)70單個總體均值檢驗(yàn)總體是否已知?用樣本標(biāo)t檢驗(yàn)小樣本容單個總體均值檢驗(yàn)總體均值的檢驗(yàn)(
2
已知,或
2未知但大樣本)假定條件總體服從正態(tài)分布若不服從正態(tài)分布,可用正態(tài)分布來近似(n
30)使用Z-統(tǒng)計量
2
已知:
2
未知:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)71單個總體均值檢驗(yàn)總體均值的檢驗(yàn)(2已知,或2未知但大單個總體均值檢驗(yàn)例解(
2
已知)
Doesanaverageboxofcerealcontain368gramsofcereal?Arandomsampleof25boxesshowed=372.5.Thecompanyhasspecifieds
tobe15gramsandthedistributiontobenormal.Testatthea=0.05level.
368gm.H0:m=368H1:m1368統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)72單個總體均值檢驗(yàn)例解(2已知)368gm.H0:m單個總體均值檢驗(yàn)Z01.96.025Reject-1.96.0251.50372.5Reject統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)73單個總體均值檢驗(yàn)Z01.96.025Reject-1.96.單個總體均值檢驗(yàn)a
=0.05n=25臨界值:±1.96檢驗(yàn)統(tǒng)計量:決策:結(jié)論:DoNotRejectata=.05.Z01.96.025Reject-1.96.025H0:m=368H1:m13681.50InsufficientEvidencethatTrueMeanisNot368.統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)74單個總體均值檢驗(yàn)a=0.05檢驗(yàn)統(tǒng)計量:DoNot單個總體均值檢驗(yàn)P值解法(p-Value=0.1336)3(a=0.05)
DoNotReject.01.50ZRejecta
=0.051.96p-Value=2x0.0668TestStatistic1.50isintheDoNotRejectRegionReject統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)75單個總體均值檢驗(yàn)P值解法(p-Value=0.1336)單個總體均值檢驗(yàn)例解(
2未知但大樣本)某電子元件批量生產(chǎn)的質(zhì)量標(biāo)準(zhǔn)為平均使用壽命1200小時。某廠宣稱他們采用一種新工藝生產(chǎn)的元件質(zhì)量大大超過規(guī)定標(biāo)準(zhǔn)。為了進(jìn)行驗(yàn)證,隨機(jī)抽取了100件作為樣本,測得平均使用壽命1245小時,標(biāo)準(zhǔn)差300小時。能否說該廠生產(chǎn)的電子元件質(zhì)量顯著地高于規(guī)定標(biāo)準(zhǔn)?(
=0.05)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)76單個總體均值檢驗(yàn)例解(2未知但大樣本)統(tǒng)計學(xué)賈俊平第章假單個總體均值檢驗(yàn)H0:
1200H1:
>1200
=0.05n=100臨界值(s):檢驗(yàn)統(tǒng)計量:在
=0.05的水平上不能拒絕H0不能認(rèn)為該廠生產(chǎn)的元件壽命顯著地高于1200小時決策:結(jié)論:Z0拒絕域0.051.645統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)77單個總體均值檢驗(yàn)H0:1200檢驗(yàn)統(tǒng)計量:在單個總體均值檢驗(yàn)總體均值的檢驗(yàn)(
2未知小樣本)假定條件總體為正態(tài)分布
2未知,且小樣本使用t
統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)78單個總體均值檢驗(yàn)總體均值的檢驗(yàn)(2未知小樣本)統(tǒng)計學(xué)賈俊平單個總體均值檢驗(yàn)例解某汽車制造商宣稱該公司一款低價車肇事平均修車費(fèi)低于等于$200。消費(fèi)者基金會認(rèn)為修車費(fèi)高于此數(shù)值,欲檢證下列假設(shè):
H0:u
u0
H1:u>u0消費(fèi)者基金會不愿在證據(jù)不充分的條件下,隨意駁斥制造商的宣稱,因此將假設(shè)檢定的顯著水平
嚴(yán)格地定在1%。因?yàn)闄z證肇事修車的成本甚高,因此消基會僅找了9個樣本點(diǎn),發(fā)現(xiàn):245,305,175,250,280,160,250,195,210統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)79單個總體均值檢驗(yàn)例解統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)79單個總體均值檢驗(yàn)H0:
200H1:
>
200
=0.01n=100臨界值(s):t.01,8=2.896檢驗(yàn)統(tǒng)計量:在
=0.01的水平上不能拒絕H0不能認(rèn)為收費(fèi)較高決策:結(jié)論:Z0拒絕域0.012.896統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)80單個總體均值檢驗(yàn)H0:200檢驗(yàn)統(tǒng)計量:在單個總體均值檢驗(yàn)例解一個汽車輪胎制造商聲稱,某一等級的輪胎的平均壽命在一定的汽車重量和正常行駛條件下大于40000公里,對一個由20個輪胎組成的隨機(jī)樣本作了試驗(yàn),測得平均值為41000公里,標(biāo)準(zhǔn)差為5000公里。已知輪胎壽命的公里數(shù)服從正態(tài)分布,我們能否根據(jù)這些數(shù)據(jù)作出結(jié)論,該制造商的產(chǎn)品同他所說的標(biāo)準(zhǔn)相符?(
=0.05)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)81單個總體均值檢驗(yàn)例解統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)81單個總體均值檢驗(yàn)H0:
40000H1:
<40000
=0.05df=20-1=19臨界值(s):檢驗(yàn)統(tǒng)計量:
在
=0.05的水平上不能拒絕H0有證據(jù)表明輪胎使用壽命顯著地大于40000公里決策:
結(jié)論:
-1.7291t0拒絕域.05?統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)82單個總體均值檢驗(yàn)H0:40000檢驗(yàn)統(tǒng)計量:在單總體比率檢驗(yàn)單總體比率檢驗(yàn)假定條件有兩類結(jié)果總體服從二項(xiàng)分布可用正態(tài)分布來近似比例檢驗(yàn)的Z統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)83單總體比率檢驗(yàn)單總體比率檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)83單總體比率檢驗(yàn)例析Amarketingcompanyclaimsthatasurveywillhavea4%responserate.Totestthisclaim,arandomsampleof500weresurveyedwith25responses.Testatthea=.05significancelevel.統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)84單總體比率檢驗(yàn)例析統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)84單總體比率檢驗(yàn)0.05臨界值:
±1.961.1411a=.05n=500Donotrejectata=.05.H0:p
=.04H1:p
1.04檢驗(yàn)統(tǒng)計量:決策:結(jié)論:Z0RejectReject.025.0251.96-1.96Wedonothavesufficientevidencetorejectthecompany’sclaimof4%responserate.0.04統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)85單總體比率檢驗(yàn)0.05臨界值:±1.961.1411a單總體比率檢驗(yàn)(p-Value=0.2538)3(a=0.05)
DoNotReject.01.1411ZRejecta
=0.051.96p-Value=2x.1269TestStatistic1.1411isintheDoNotRejectRegionRejectP值解法統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)86單總體比率檢驗(yàn)(p-Value=0.2538)3(單總體方差檢驗(yàn)單總體方差的檢驗(yàn)(
2檢驗(yàn))檢驗(yàn)單個總體的方差或標(biāo)準(zhǔn)差假設(shè)總體近似服從正態(tài)分布檢驗(yàn)統(tǒng)計量樣本方差假設(shè)的總體方差)1(~)1(22022--=nSncsc統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)87單總體方差檢驗(yàn)單總體方差的檢驗(yàn)(2檢驗(yàn))樣本方差假設(shè)的總單總體方差檢驗(yàn)例解某廠商生產(chǎn)出一種新型的飲料裝瓶機(jī)器,按設(shè)計要求,該機(jī)器裝一瓶一升(1000cm3)的飲料誤差上下不超過1cm3。如果達(dá)到設(shè)計要求,表明機(jī)器的穩(wěn)定性非常好。現(xiàn)從該機(jī)器裝完的產(chǎn)品中隨機(jī)抽取25瓶,分別進(jìn)行測定(用樣本減1000cm3),得到如下結(jié)果。檢驗(yàn)該機(jī)器的性能是否達(dá)到設(shè)計要求
(
=0.05)0.3-0.4-0.71.4-0.6-0.3-1.50.6-0.91.3-1.30.71-0.50-0.60.7-1.5-0.2-1.9-0.51-0.2-0.61.1統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)88單總體方差檢驗(yàn)例解0.3-0.4-0.71.4-0.6-0.單總體方差檢驗(yàn)H0:
2=1H1:
2
1
=0.05df=25-1=24臨界值(s):統(tǒng)計量:
在
=0.05的水平上不能拒絕H0不能認(rèn)為該機(jī)器的性能沒有達(dá)到設(shè)計要求
2039.3612.40
/2=.05決策:結(jié)論:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)89單總體方差檢驗(yàn)H0:2=1統(tǒng)計量:在=0.8.3兩個總體的假設(shè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)908.3兩個總體的假設(shè)檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)90兩個總體的檢驗(yàn)Z
檢驗(yàn)(大樣本)t
檢驗(yàn)(小樣本)t
檢驗(yàn)(小樣本)Z檢驗(yàn)F
檢驗(yàn)獨(dú)立樣本配對樣本均值比率方差統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)91兩個總體的檢驗(yàn)Z檢驗(yàn)t檢驗(yàn)t檢驗(yàn)獨(dú)立樣本配對樣本均值比兩總體均值的檢驗(yàn)假設(shè)研究的問題沒有差異有差異均值1
均值2均值1<均值2均值1
均值2均值1>均值2H0
1–
2=0
1–
2
0
1–
2
0H1
1–
2
0
1–
2<0
1–
2>0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)92兩總體均值的檢驗(yàn)假設(shè)研究的問題沒有差異均值1均值2均值兩總體均值的檢驗(yàn)獨(dú)立樣本(
12、
22
已知)假定條件兩個樣本是獨(dú)立的隨機(jī)樣本兩個總體都是正態(tài)分布若不是正態(tài)分布,可以用正態(tài)分布來近似(n1
30和n2
30)檢驗(yàn)統(tǒng)計量為統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)93兩總體均值的檢驗(yàn)獨(dú)立樣本(12、22已知)統(tǒng)計學(xué)賈俊兩總體均值的檢驗(yàn)
當(dāng)樣本n>30時,兩樣本均值的抽樣分布為近似正態(tài)分布
1
21/n1
2
22/n2
1-2統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)94兩總體均值的檢驗(yàn)當(dāng)樣本n>30時,兩樣本均值的抽樣分兩總體均值的檢驗(yàn)獨(dú)立樣大樣本
(
12、
22
未知,)如果是大樣本(n>30),則我們可以用樣本方差s2來取代未知的總體方差
2。統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)95兩總體均值的檢驗(yàn)獨(dú)立樣大樣本(12、22未知,)統(tǒng)兩總體均值的檢驗(yàn)例解(P&G)公司宣布含氟牙膏Crest可以防止蛀牙,為了檢證此一假設(shè),我們找了一群牙齒健康狀況相同的十歲小朋友,將之分成用「含氟」及用普通牙膏兩組,觀察一年后紀(jì)錄其蛀牙狀況假設(shè)從用普通牙膏的小朋友中取100個隨機(jī)樣本,其蛀牙平均值為4.8顆,方差為s12=1.1顆。在從用含氟牙膏的小朋友中取120獨(dú)立樣本,計算其平均蛀牙數(shù)為3.6顆,方差為s22=0.9顆,在顯著水平5%下檢定上述的假說統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)96兩總體均值的檢驗(yàn)例解統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)96兩總體均值的檢驗(yàn)(續(xù))RejectH0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)97兩總體均值的檢驗(yàn)(續(xù))RejectH0統(tǒng)計學(xué)賈俊平第章假兩總體均值的檢驗(yàn)例解IsthereevidencetoconcludethattheaveragemonthlychargeintheentirepopulationofAmericanExpressGoldCardmembersisdifferentfromtheaveragemonthlychargeintheentirepopulationofPreferredVisacardholders?統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)98兩總體均值的檢驗(yàn)例解統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)98兩總體均值的檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)99兩總體均值的檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)99兩總體均值的檢驗(yàn)獨(dú)立小樣本(
12=
22
)檢驗(yàn)具有等方差的兩個總體的均值假定條件兩個樣本是獨(dú)立的隨機(jī)樣本兩個總體都是正態(tài)分布兩個總體方差未知但相等
12=22檢驗(yàn)統(tǒng)計量其中:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)100兩總體均值的檢驗(yàn)獨(dú)立小樣本(12=22)其中:統(tǒng)計學(xué)賈兩總體均值的檢驗(yàn)
NYSE
NASDAQ
Number 21 25
SampleMean
3.272.53SampleStdDev 1.301.16Assumingequalvariances,is
thereadifferenceinaverage
yield(a
=0.05)??1984-1994T/MakerCo.例解You’reafinancialanalystforCharlesSchwab.IsthereadifferenceinaveragedividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)101兩總體均值的檢驗(yàn)兩總體均值的檢驗(yàn)p-Value2(p-Valueisbetween.02and.05)<(a=0.05)Reject.02.03ZRejecta
22.0154isbetween.01and.025TestStatistic2.03isintheRejectRegionReject-2.0154=.025P值解法統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)102兩總體均值的檢驗(yàn)p-Value(p-Valueisbet兩總體均值的檢驗(yàn)H0:m1-m2=0i.e.(m1=m2)H1:m1-m210i.e.(m1
1m2)a
=0.05df=21+25-2=44臨界值(s):檢驗(yàn)統(tǒng)計量:
決策結(jié)論Rejectata=0.05.Thereisevidenceofadifferenceinmeans.t02.0154-2.0154.025RejectH0RejectH0.0252.03統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)103兩總體均值的檢驗(yàn)H0:m1-m2=0i.e.兩總體均值的檢驗(yàn)獨(dú)立小樣本(
12
22
)檢驗(yàn)具有等方差的兩個總體的均值假定條件兩個樣本是獨(dú)立的隨機(jī)樣本兩個總體都是正態(tài)分布兩個總體方差未知但相等
12
22
檢驗(yàn)統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)104兩總體均值的檢驗(yàn)獨(dú)立小樣本(1222)統(tǒng)計學(xué)賈俊平兩總體均值的檢驗(yàn)(續(xù))匹配樣本檢驗(yàn)兩個總體的均值配對或匹配,各種前測、后測的比較如廣告前后的銷售額、接受訓(xùn)練前后的成績差異…等由于兩組數(shù)據(jù)不是獨(dú)立隨機(jī)樣本,我們將兩兩的差異當(dāng)成一個隨機(jī)樣本來處理假定條件兩個總體都服從正態(tài)分布如果不服從正態(tài)分布,可用正態(tài)分布來近似統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)105兩總體均值的檢驗(yàn)(續(xù))匹配樣本統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)10兩總體均值的檢驗(yàn)觀察序號樣本1樣本2差值1x11x21d1=x11-x212x12x22d2=x12-x22MMMMix1ix2idi=x1i-x2iMMMMnx1nx2ndn=x1n-x2n統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)106兩總體均值的檢驗(yàn)觀察序號樣本1樣本2差值1x11x21d兩總體均值的檢驗(yàn)樣本差值均值樣本差值標(biāo)準(zhǔn)差自由度df=n
-1統(tǒng)計量μd:假設(shè)的差值統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)107兩總體均值的檢驗(yàn)樣本差值均值樣本差值標(biāo)準(zhǔn)差自由度df=n兩總體均值的檢驗(yàn)例解Assumeyouworkinthefinancedepartment.Isthenewfinancialpackagefaster(a=0.05level)?Youcollectthefollowingprocessingtimes:User
ExistingSystem(1)
NewSoftware(2)
Difference
DiC.B. 9.98Seconds 9.88Seconds .10T.F. 9.88 9.86 .02M.H. 9.84 9.75 .09 R.K. 9.99 9.80 .19M.O. 9.94 9.87 .07D.S. 9.84 9.84 .00S.S. 9.86 9.87 -.01C.T. 10.12 9.98 .14K.T. 9.90 9.83 .07S.Z. 9.91 9.86 .05統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)108兩總體均值的檢驗(yàn)例解UserExistingSyste兩總體均值的檢驗(yàn)Isthenewfinancialpackagefaster(0.05level)?H0:md£
0
H1:md
>
0
a=.05檢驗(yàn)統(tǒng)計量臨界值=1.8331df=n-1=9Reject
a=.051.8331決策:RejectH0tStat.intherejectionzone.結(jié)論:Thenewsoftwarepackageisfaster.3.66統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)109兩總體均值的檢驗(yàn)Isthenewfinancialp兩總體比率之差檢驗(yàn)比率之差檢驗(yàn)假定條件兩個總體是獨(dú)立的兩個總體都服從二項(xiàng)分布n1p1≥5,n1q1≥5,n2p2≥5,n2q2≥5可以用正態(tài)分布來近似檢驗(yàn)統(tǒng)計量統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)110兩總體比率之差檢驗(yàn)比率之差檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)11兩總體比率之差檢驗(yàn)例解在高校學(xué)生的一個隨機(jī)樣本中,36名男生中有16人說他們購買食品時看生產(chǎn)日期,而36名女生中則有28人說說好們購買食品時看生產(chǎn)日期,判斷在這一點(diǎn)上,女生是否比男生更細(xì)心?(α=0.05)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)111兩總體比率之差檢驗(yàn)例解統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)111兩總體比率之差檢驗(yàn)H0:
1-
2
0H1:
1-
2<0
=0.05n1=36,n2=36臨界值(s):檢驗(yàn)統(tǒng)計量:決策:結(jié)論:
在
=0.05的水平拒絕H0女生顯著高-1.645Z0拒絕域
統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)112兩總體比率之差檢驗(yàn)H0:1-20檢驗(yàn)統(tǒng)計量:兩總體方差比檢驗(yàn)兩個總體方差比的檢驗(yàn)假定條件兩個總體都服從正態(tài)分布,且方差相等兩個獨(dú)立的隨機(jī)樣本
假定形式H0:s12=s22
或H0:s12
s22(或
)H1:s12
s22H1:s12
<s22(或>)檢驗(yàn)統(tǒng)計量F=s12/s22~F(n1
–1,n2
–1)統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)113兩總體方差比檢驗(yàn)兩個總體方差比的檢驗(yàn)統(tǒng)計學(xué)賈俊平第章假設(shè)檢兩總體方差比檢驗(yàn)FF1-
F
無法拒絕域統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)114兩總體方差比檢驗(yàn)FF1-F統(tǒng)計學(xué)賈俊平第章假設(shè)兩總體方差比檢驗(yàn)
NYSE
NASDAQ
Number 2125
SampleMean
3.272.53SampleStdDev 1.301.16IsthereadifferenceinthevariancesbetweentheNYSE&NASDAQatthe
a=0.05level??1984-1994T/MakerCo.例解You’reafinancialanalystforCharlesSchwab.IsthereadifferenceinaveragedividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)115兩總體方差比檢驗(yàn)兩總體方差比檢驗(yàn)H0:
s12=s22
H1:s12
1
s22
a
=
.05df1
=
20df2
=
24
臨界值:檢驗(yàn)統(tǒng)計量:決策:結(jié)論:Donotrejectata=0.05.0F2.330.415.025RejectReject.0251.25Thereisinsufficientevidencetoproveadifferenceinvariances.統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)116兩總體方差比檢驗(yàn)H0:s12=s22檢驗(yàn)統(tǒng)計量:8.4假設(shè)檢驗(yàn)的進(jìn)一步討論統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)1178.4假設(shè)檢驗(yàn)的進(jìn)一步討論統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)117區(qū)間估計與假設(shè)檢驗(yàn)比較根據(jù)置信區(qū)間檢驗(yàn)求出雙側(cè)檢驗(yàn)均值的置信區(qū)間若總體的假設(shè)值
0在置信區(qū)間外,拒絕H0
2已知時:
2未知時:統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)118區(qū)間估計與假設(shè)檢驗(yàn)比較根據(jù)置信區(qū)間檢驗(yàn)2已知時:2未知時區(qū)間估計與假設(shè)檢驗(yàn)比較抽樣分布H0值上限下限a/2a/2樣本統(tǒng)計量1-
置信水平H0值統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)119區(qū)間估計與假設(shè)檢驗(yàn)比較抽樣分布H0值上限下限a/2a/2區(qū)間估計與假設(shè)檢驗(yàn)比較左側(cè)檢驗(yàn):求出單邊置信下限若總體的假設(shè)值
0小于單邊置信下限,拒絕H0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)120區(qū)間估計與假設(shè)檢驗(yàn)比較左側(cè)檢驗(yàn):求出單邊置信下限統(tǒng)計學(xué)賈俊平區(qū)間估計與假設(shè)檢驗(yàn)比較右側(cè)檢驗(yàn):求出單邊置信上限若總體的假設(shè)值
0大于單邊置信下限,拒絕H0統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)121區(qū)間估計與假設(shè)檢驗(yàn)比較右側(cè)檢驗(yàn):求出單邊置信上限統(tǒng)計學(xué)賈俊平區(qū)間估計與假設(shè)檢驗(yàn)比較假設(shè)檢驗(yàn)的局限小心詮釋統(tǒng)計顯著性樣本很大時,即使效應(yīng)(effect)差異不大也會產(chǎn)生統(tǒng)計顯著性;但可能因?yàn)樾?yīng)差異不大而沒有實(shí)際的效用數(shù)據(jù)上呈現(xiàn)的統(tǒng)計顯著性應(yīng)配合資料形態(tài)來詮釋離群值的檢查等配合估計區(qū)間來詮釋置信區(qū)間也估計效應(yīng)的大小統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)122區(qū)間估計與假設(shè)檢驗(yàn)比較假設(shè)檢驗(yàn)的局限統(tǒng)計學(xué)賈俊平第章假設(shè)檢區(qū)間估計與假設(shè)檢驗(yàn)比較例析1000組配對樣本的相關(guān)系數(shù)為0.08,在1%的顯著性水平下具有顯著性,僅表示有足夠的證據(jù)認(rèn)為總體相關(guān)系數(shù)不是零且應(yīng)為正在實(shí)用上,0.08的相關(guān)性常可忽略而不會影響后續(xù)分析以散布圖檢查資料的相關(guān)性檢查數(shù)據(jù)間是否具有函數(shù)關(guān)系,或是離群值影響相關(guān)性的強(qiáng)度等以相關(guān)系數(shù)的置信區(qū)間來了解相關(guān)性的強(qiáng)度統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)123區(qū)間估計與假設(shè)檢驗(yàn)比較例析統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)123區(qū)間估計與假設(shè)檢驗(yàn)比較置信區(qū)間只能在預(yù)先規(guī)定的概率α前提下進(jìn)行計算,而假設(shè)檢驗(yàn)?zāi)軌蚋鶕?jù)樣本數(shù)據(jù)獲得的統(tǒng)計量(Z,t)及樣本的其他信息(如自由度n)獲得確切的概率P值統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)124區(qū)間估計與假設(shè)檢驗(yàn)比較置信區(qū)間只能在預(yù)先規(guī)定的概率α前提下進(jìn)假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明再談統(tǒng)計顯著性統(tǒng)計顯著性的價值在于,指出“效應(yīng)(effect)的發(fā)生并非偶然”的證據(jù)。可應(yīng)用于:新藥產(chǎn)品的有效性與安全性需顯著性證據(jù)法庭在審理差別待遇的訴訟需要統(tǒng)計顯著性營銷者需要知道新的廣告策略是否顯著地優(yōu)于舊的策略醫(yī)學(xué)研究者要了解新的療法是否顯著得好……統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)125假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明再談統(tǒng)計顯著性統(tǒng)計學(xué)賈俊平第章假設(shè)檢假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明(續(xù))檢驗(yàn)的原理是“小概率事件在一次試驗(yàn)中不發(fā)生”,以此作為推斷的依據(jù),決定是無法拒絕或拒絕。但是這一原理只是在概率意義下成立,并不是嚴(yán)格成立的,即不能說小概率事件在一次試驗(yàn)中絕對不可能發(fā)生統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)126假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明(續(xù))檢驗(yàn)的原理是“小概率事件在一次試假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明(續(xù))在假設(shè)檢驗(yàn)中,原假設(shè)與備選假設(shè)的地位是不對等的。一般來說是較小的,因而檢驗(yàn)推斷是“偏向”原假設(shè),而“歧視”備選假設(shè)的。因?yàn)椋ǔH粢穸ㄔ僭O(shè),需要有顯著性的事實(shí),即小概率事件發(fā)生,否則就認(rèn)為原假設(shè)成立。因此在檢驗(yàn)中無法拒絕,并不等于從邏輯上證明了的成立,只是找不到不成立的有力證據(jù)。在應(yīng)用中,對同一問題若提出不同的原假設(shè),甚至可以有完全不同的結(jié)論統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)127假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明(續(xù))在假設(shè)檢驗(yàn)中,原假設(shè)與備選假設(shè)的假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明(續(xù))從另一個角度看,既然是受保護(hù)的,則對于的肯定相對來說是較缺乏說服力的,充其量不過是原假設(shè)與試驗(yàn)結(jié)果沒有明顯矛盾;反之,對于的否定則是有力的,且越小,小概率事件越難于發(fā)生,一旦發(fā)生了,這種否定就越有力,也就越能說明問題統(tǒng)計學(xué)賈俊平第章假設(shè)檢驗(yàn)128假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明(續(xù))從另一個角度看,既然是受保護(hù)的,假設(shè)檢驗(yàn)的幾點(diǎn)補(bǔ)充說明P-值多小才可信的衡量基礎(chǔ):H0
的可信程度:若H0已被相信行之有年,則需較強(qiáng)的證據(jù)(P-值較小)才可說服別人。拒絕H0
的后果:若拒絕H0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于P16-Ki-67雙染對宮頸篩查方案的探索及比較研究
- 傳媒領(lǐng)域案例研究性學(xué)習(xí)報告范文
- 教師多媒體信息技術(shù)應(yīng)用能力培訓(xùn)個人研修計劃
- 小學(xué)教師閱讀推廣讀書計劃
- 2025年石油天然氣安全生產(chǎn)教育培訓(xùn)計劃
- 八年級地理湘教版上冊學(xué)生發(fā)展計劃
- 五年級科學(xué)學(xué)習(xí)興趣培優(yōu)補(bǔ)差計劃
- 青島版一年級下冊數(shù)學(xué)知識點(diǎn)教學(xué)計劃
- 2025年九年級下學(xué)期班主任班級安全應(yīng)急計劃
- 部編版五年級語文上冊期中復(fù)習(xí)計劃
- 運(yùn)輸公司交通安全培訓(xùn)課件
- 《康復(fù)治療學(xué)專業(yè)畢業(yè)實(shí)習(xí)》教學(xué)大綱
- 北師大版7年級數(shù)學(xué)下冊期末真題專項(xiàng)練習(xí) 03 計算題(含答案)
- 職業(yè)衛(wèi)生管理制度和操作規(guī)程標(biāo)準(zhǔn)版
- 小學(xué)信息技術(shù)四年級下冊教案(全冊)
- 河道保潔船管理制度
- 【增程式電動拖拉機(jī)驅(qū)動系統(tǒng)總體設(shè)計方案計算1900字】
- 2025年重慶市中考物理試卷真題(含標(biāo)準(zhǔn)答案)
- 2025至2030中國云計算行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報告
- 黨課課件含講稿:《關(guān)于加強(qiáng)黨的作風(fēng)建設(shè)論述摘編》輔導(dǎo)報告
- GB/T 19023-2025質(zhì)量管理體系成文信息指南
評論
0/150
提交評論