




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
CollaboratorsJorgeDukelskyInstitutodeEstructuradelaMateria,MadridStuartPittelBartolResearchInstitute,UniversityofDelaware,USAMarioStoitsovInstituteforNuclearResearch&NuclearEnergy,SofiaContainsIntroductionWilson’sRenormalizationGroupMethodDensityMatrixRenormalizationGroupMethodp-hDMRGbasicsApplicationtonuclearshellmodelproblemsOutlookWilson’sRenormalizationGroup(1974)Thegoal:tosolvetheKondoproblem(describestheantiferromagneticinteractionoftheconductionelectronswithasinglelocalizedimpurity)aftermappingitontoa1Dlatticeinenergyspace.Theassumption:low-energystatesmostimportantforlaw-energybehavioroflargequantumsystemsWilson’sRenormalizationGroup(1974)Theidea:numericallyintegrateouttheirrelevantdegreesoffreedomThealgorithm:isolatefinitesubspaceofthefullconfigurationspacediagonalizenumericallykeepmlowestenergyeigenstatesaddasiteiterateSamplingtheconfigurationspacemsssInfiniteprocedure“theonionpicture”superblockenvironment
thesizeofthesuperblockstaysthesamewhiletheenvironmentshrinksFromWRGtoDMRGTheWRGwasthefirstnumericalimplementationoftheRGtoanon-perturbativeproblemliketheKondomodel,forwhichithadenormoussuccess.WRGcannotbeappliedtootherlatticeproblems.For1DHubbardmodelsitbeginstodeviatesignificantlyfromtheexactresults.Theproblemresidesinthefactthatthetruncationstrategyisbasedsolelyonenergyarguments.ThesolutiontothisproblemwasproposedbyWhitewhointroductedtheDMRG:PRL69(1992)2863andPRB48(1993)10345.From
1DlatticestofiniteFermisystemsS.WhiteintroducedtheDMRGtotreat1Dlatticemodelswithhighaccuracy.PRL69(1992)2863andPRB48(1993)10345.S.WhiteandD.HussestudiedS=1HeisenbergchaingivingtheGSenergywith12significantfigures.PRB48(1993)3844.T.Xiangproposedthek-DMRGforelectronsin2Dlattices.PRB53(2019)R10445.S.WhiteandR.L.Martinusedthek-DMRGforquantumchemicalcalculation.J.Chem.Phys.110(2019)4127.SincethenapplicationsinQuantumChemistry,smallmetallicgrain,nuclei,quantumHallsystems,etc…reviewarticle:U.Schollw?ck,Rev.Mod.Phys.77(2019)259Theparticle-holeDMRGIntroducedbyJ.DukelskyandG.SierratostudysystemsofutrasmallsuperconductinggrainsPRL83(2019)172andPRB61(2000)12302Motivation:
BCSbreaksparticlenumber.PBCSimprovesthesuperconductingstate.Fluctuationdominatedphase?Levelordering:InFermisystems,theFermileveldefinesholeandparticlespstates.MostofthecorrelationstakeplaceclosetotheFermolevelp-hDMRGbasicsFLet'sconsiderforsimplicityaxially-symmetricNilsson-likelevels,whichadmitfourstates(s=4):Whenweaddthenextlevel:numberofparticlestatesgoesfrommtos×mnumberofholestatesgoesfrommtos×mnumberofstatesinvolvingparticlescoupledtoholesalsogoesup.F…F…FBasicideaofDMRGmethod:Ftruncatefromthes×mstatesforparticlestotheoptimum
mofthem,andlikewisefromthes×mstatesforholestotheoptimum
mofthem.Finiteprocedure
mediumenvironmentsuperblock
m
x
s
xmstartingpoint:infiniteproceduresizeofsuperblockandmediumstaythesamewhileenvironmentblockshrinksmediumblockstoredfrompreviousiteration“zipping”backandforth→iterativeconvergencewarmup1stsweep2ndsweepSamplingcriterion:FAQQ:Howtoconstructoptimalapproximationtothegroundstatewavefunctionwhenweonlyretaincertainnumberofparticleandholestates?A:Choosethestatesthatmaximizetheoverlapbetweenthetruncatedstateandtheexactgroundstate.Q:Howtodothis?A:DiagonalizetheHamiltonian…DefinethereduceddensitymatricesforparticlesandholesDiagonalizethesematrices:
representtheprobabilityoffindingaparticular-stateinthefullgroundstatewavefunctionofthesystem;…Optimaltruncationcorrespondstoretainingafixednumberofeigenvectorsthathavelargestprobabilityofbeingingroundstate,i.e.,havelargesteigenvalues;Parameteroftheprocedure:numberofstatesretainedaftereachinteraction;Bottomline:
DMRGisamethodforsystematicallybuildingincorrelationsfromallsingle-particlelevelsinproblem.Aslongasconvergenceissufficientlyrapidasafunctionofnumberofstateskept,itshouldgiveanaccuratedescriptionofthegroundstateofthesystem,withoutuseverhavingtodiagonalizeenormousHamiltonianmatrices;MustcalculatematrixelementsofallrelevantoperatorsateachstepoftheprocedureThehighestmemoryconsumingoperatorswithinablockareTheycanbecontractedwiththeinteractionandbereducedtoO(1)andO(L)Subtleties:Subtleties:Thismakesitpossibletosetupaniterativeprocedurewherebyeachlevelcanbeaddedstraightforwardly.Mustofcourserotatesetofstoredmatrixelementstooptimal(truncated)basisateachiteration.Procedureasdescribedguaranteesoptimizationofgroundstate.Togetoptimaldescriptionofmanystates,wemayneedtoconstructdensitymatricesthatsimultaneouslyincludeinfoonseveralstatesofthesystem.LegezaandSolyomusedquantuminformationconceptslikeblockentropyandentanglementtoconcludethattheDMRGisextremelysensitivetothelevelorderingandtheinitializationprocedure.ph-DMRG:modelcalculationsHamiltonian40particlesinj=99/2shellsizeofthesuperblockndim~1026parameters:ph-DMRG:realisticnuclearstructurecalculationsHamiltonianph-DMRG:realisticnuclearstructurecalculationsconfigurationspaceph-DMRG:24Mginm-scheme
sd-shell4valentprotons4valentneutronsUSDinteractionSphHFph-DMRG:Infinitevs.finiteprocedureph-DMRG:48Crinthej-schemeph-DMRG:48Crinthem-schemeTheOakRidgeDMRGprogramThomasPapenbrockfromORNLdevelopedanalternativeprogramfordoingnuclearstructurecalculationswiththeDMRG:DMRGwithsweepinginthem-schemeAxialHFbasis.ThelevelsfromtheFermienergy.Inthewarmup,protonsarethemediumforneutronsandviceversa.Inthesw
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業廢水處理技術與工程實踐
- 工業污染治理的技術手段與實踐
- 工業建筑設計風格與案例分析
- 工業廢水處理現狀及發展趨勢分析
- 工業污染防治與公眾參與
- 工業自動化中的仿真技術探索
- 工業物聯網的發展與應用案例
- 工業節能減排與綠色制造
- 工業遺址改造與再利用
- 工作中如何提高專注力
- 甘肅電投筆試題
- 《車用動力電池液冷板技術條件》
- 2025版國家開放大學法學本科《知識產權法》期末紙質考試第二大題多項選擇題題庫
- 中醫藥膳學知識學習考試題庫500題(含答案)
- 《九型人格培訓》課件
- 中國文化概觀-終結性考核-國開(SC)-參考資料
- 五年級下冊語文作文范文1-8單元
- 工業廠房電氣工程施工方案
- 人教版九年級全一冊英語期末學情評估測試卷(含答案)
- 檢驗科生物安全手冊
- 2024年海南省中考數學試題卷(含答案解析)
評論
0/150
提交評論